Repositorio de producción científica de la Universidad de Sevilla

Obtaining optimal quality measures for quantitative association rules

 

Advanced Search
 
Opened Access Obtaining optimal quality measures for quantitative association rules
Cites

Show item statistics
Icon
Export to
Author: Martínez Ballesteros, María del Mar
Troncoso Lora, Alicia
Martínez Álvarez, Francisco
Riquelme Santos, José Cristóbal
Department: Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Date: 2016
Published in: Neurocomputing, 176, 36-47.
Document type: Article
Abstract: There exist several works in the literature in which fitness functions based on a combination of weighted measures for the discovery of association rules have been proposed. Nevertheless, some differences in the measures used to assess the quality...
[See more]
Cite: Martínez Ballesteros, M.d.M., Troncoso Lora, A., Martínez Álvarez, F. y Riquelme Santos, J.C. (2016). Obtaining optimal quality measures for quantitative association rules. Neurocomputing, 176, 36-47.
Size: 756.4Kb
Format: PDF

URI: http://hdl.handle.net/11441/43608

DOI: http://dx.doi.org/10.1016/j.neucom.2014.10.100

This work is under a Creative Commons License: 
Attribution-NonCommercial-NoDerivatives 4.0 Internacional

This item appears in the following Collection(s)