Repositorio de producción científica de la Universidad de Sevilla

Discovering gene association networks by multi-objective evolutionary quantitative association rules

Opened Access Discovering gene association networks by multi-objective evolutionary quantitative association rules

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Martínez Ballesteros, María del Mar
Nepomuceno Chamorro, Isabel de los Ángeles
Riquelme Santos, José Cristóbal
Departamento: Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Fecha: 2014
Publicado en: Journal of Computer and System Sciences, 80 (1), 118-136.
Tipo de documento: Artículo
Resumen: In the last decade, the interest in microarray technology has exponentially increased due to its ability to monitor the expression of thousands of genes simultaneously. The reconstruction of gene association networks from gene expression profiles is a relevant task and several statistical techniques have been proposed to build them. The problem lies in the process to discover which genes are more relevant and to identify the direct regulatory relationships among them. We developed a multi-objective evolutionary algorithm for mining quantitative association rules to deal with this problem. We applied our methodology named GarNet to a well-known microarray data of yeast cell cycle. The performance analysis of GarNet was organized in three steps similarly to the study performed by Gallo et al. GarNet outperformed the benchmark methods in most cases in terms of quality metrics of the networks, such as accuracy and precision, which were measured using YeastNet database as true ne...
[Ver más]
Cita: Martínez Ballesteros, M.d.M., Nepomuceno Chamorro, I.d.l.Á. y Riquelme Santos, J.C. (2014). Discovering gene association networks by multi-objective evolutionary quantitative association rules. Journal of Computer and System Sciences, 80 (1), 118-136.
Tamaño: 533.1Kb
Formato: PDF

URI: http://hdl.handle.net/11441/43540

DOI: http://dx.doi.org/10.1016/j.jcss.2013.03.010

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones