Repositorio de producción científica de la Universidad de Sevilla

Approximation of Lipschitz functions by Δ-convex functions in banach spaces

Opened Access Approximation of Lipschitz functions by Δ-convex functions in banach spaces

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Cepedello Boiso, Manuel
Departamento: Universidad de Sevilla. Departamento de Análisis Matemático
Fecha: 1998-12
Publicado en: Israel Journal of Mathematics, 106 (1), 269-284.
Tipo de documento: Artículo
Resumen: In this paper we give some results about the approximation of a Lipschitz function on a Banach space by means of ∆-convex functions. In particular, we prove that the density of ∆-convex functions in the set of Lipschitz functions for the topology of uniform convergence on bounded sets characterizes the superreflexivity of the Banach space. We also show that Lipschitz functions on superreflexive Banach spaces are uniform limits on the whole space of ∆-convex functions.
Cita: Cepedello Boiso, M. (1998). Approximation of lipschitz functions by Δ-convex functions in banach spaces. Israel Journal of Mathematics, 106 (1), 269-284.
Tamaño: 195.0Kb
Formato: PDF

URI: http://hdl.handle.net/11441/43521

DOI: 10.1007/BF02773472

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones