Repositorio de producción científica de la Universidad de Sevilla

Weak compactness and fixed point property for affine mappings

Opened Access Weak compactness and fixed point property for affine mappings

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Domínguez Benavides, Tomás
Japón Pineda, María de los Ángeles
Prus, Stanislaw
Departamento: Universidad de Sevilla. Departamento de Análisis Matemático
Fecha: 2004-04-01
Publicado en: Journal of Functional Analysis, 209 (1), 1-15.
Tipo de documento: Artículo
Resumen: It is shown that a closed convex bounded subset of a Banach space is weakly compact if and only if it has the generic fixed point property for continuous affine mappings. The class of continuous affine mappings can be replaced by the class of affine mappings which are uniformly Lipschitzian with some constant M > 1 in the case of c0, the class of affine mappings which are uniformly Lipschitzian with some constant M > √6 in the case of quasi-reflexive James’ space J and the class of nonexpansive affine mappings in the case of L-embedded spaces.
Cita: Domínguez Benavides, T., Japón Pineda, M.d.l.Á. y Prus, S. (2004). Weak compactness and fixed point property for affine mappings. Journal of Functional Analysis, 209 (1), 1-15.
Tamaño: 190.2Kb
Formato: PDF

URI: http://hdl.handle.net/11441/43458

DOI: 10.1016/j.jfa.2002.02.001

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones