Repositorio de producción científica de la Universidad de Sevilla

On the evolutionary optimization of k-NN by label-dependent feature weighting

Opened Access On the evolutionary optimization of k-NN by label-dependent feature weighting

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Mateos García, Daniel
García Gutiérrez, Jorge
Riquelme Santos, José Cristóbal
Departamento: Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Fecha: 2012
Publicado en: Pattern Recognition Letters, 33 (16), 2232-2238.
Tipo de documento: Artículo
Resumen: Different approaches of feature weighting and k-value selection to improve the nearest neighbour technique can be found in the literature. In this work, we show an evolutionary approach called k-Label Dependent Evolutionary Distance Weighting (kLDEDW) which calculates a set of local weights depending on each class besides an optimal k value. Thus, we attempt to carry out two improvements simultaneously: we locally transform the feature space to improve the accuracy of the k-nearest-neighbour rule whilst we search for the best value for k from the training data. Rigorous statistical tests demonstrate that our approach improves the general k-nearest-neighbour rule and several approaches based on local weighting.
Cita: Mateos García, D., García Gutiérrez, J. y Riquelme Santos, J.C. (2012). On the evolutionary optimization of k-NN by label-dependent feature weighting. Pattern Recognition Letters, 33 (16), 2232-2238.
Tamaño: 701.3Kb
Formato: PDF

URI: http://hdl.handle.net/11441/43441

DOI: http://dx.doi.org/10.1016/j.patrec.2012.08.011

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones