Repositorio de producción científica de la Universidad de Sevilla

Optimal exponents in weighted estimates without examples

Opened Access Optimal exponents in weighted estimates without examples

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Luque Martínez, Teresa
Pérez Moreno, Carlos
Rela, Ezequiel
Departamento: Universidad de Sevilla. Departamento de Análisis Matemático
Fecha: 2015
Publicado en: Mathematical Research Letters, 22 (1), 183-201.
Tipo de documento: Artículo
Resumen: t. We present a general approach for proving the optimality of the exponents on weighted estimates. We show that if an operator T satisfies a bound like kT kLp(w) ≤ c [w] β Ap w ∈ Ap, then the optimal lower bound for β is closely related to the asymptotic behaviour of the unweighted L p norm kT kLp(Rn) as p goes to 1 and +∞, which is related to Yano’s classical extrapolation theorem. By combining these results with the known weighted inequalities, we derive the sharpness of the exponents, without building any specific example, for a wide class of operators including maximal-type, Calder´on–Zygmund and fractional operators. In particular, we obtain a lower bound for the best possible exponent for Bochner-Riesz multipliers. We also present a new result concerning a continuum family of maximal operators on the scale of logarithmic Orlicz functions. Further, our method allows to consider in a unified way maximal operators defined over very general Muckenhoupt bases.
Cita: Pérez Moreno, C. y Rela, E. (2015). Optimal exponents in weighted estimates without examples. Mathematical Research Letters, 22 (1), 183-201.
Tamaño: 401.7Kb
Formato: PDF

URI: http://hdl.handle.net/11441/42933

DOI: 10.4310/MRL.2015.v22.n1.a10

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones