Show simple item record

dc.creatorAguilar Ruiz, Jesús Salvadores
dc.creatorRiquelme Santos, José Cristóbales
dc.creatorToro Bonilla, Migueles
dc.date.accessioned2016-06-27T11:00:10Z
dc.date.available2016-06-27T11:00:10Z
dc.date.issued2003
dc.identifier.citationAguilar Ruiz, J.S., Riquelme Santos, J.C. y Toro Bonilla, M. (2003). Evolutionary Learning of Hierarchical Decision Rules. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 23 (2), 324-331.
dc.identifier.issn1083-4419es
dc.identifier.urihttp://hdl.handle.net/11441/42774
dc.description.abstractThis paper describes an approach based on evolutionary algorithms, hierarchical decision rules (HIDER), for learning rules in continuous and discrete domains. The algorithm produces a hierarchical set of rules, that is, the rules are sequentially obtained and must be, therefore, tried in order until one is found whose conditions are satisfied. Thus, the number of rules may be reduced because the rules could be inside one another. The evolutionary algorithm uses both real and binary coding for the individuals of the population. We have tested our system on real data from the UCI Repository, and the results of a ten-fold cross-validation are compared to C4.5s, C4.5Rules, See5s, and See5Rules. The experiments show that HIDER works well in practice.es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherIEEEes
dc.relation.ispartofIEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 23 (2), 324-331.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDecision ruleses
dc.subjectdecision treeses
dc.subjectevolutionary algorithms (EAs)es
dc.subjectsupervised learninges
dc.titleEvolutionary Learning of Hierarchical Decision Ruleses
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/submittedVersiones
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticoses
dc.identifier.doihttp://dx.doi.org/10.1109/TSMCB.2002.805696es
idus.format.extent8es
dc.journaltitleIEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)es
dc.publication.volumen23es
dc.publication.issue2es
dc.publication.initialPage324es
dc.publication.endPage331es
dc.identifier.idushttps://idus.us.es/xmlui/handle/11441/42774

FilesSizeFormatViewDescription
Evolutionary learning.pdf554.5KbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional