Repositorio de producción científica de la Universidad de Sevilla

Triclustering on TemporaryMicroarray Data using the TriGen Algorithm

Opened Access Triclustering on TemporaryMicroarray Data using the TriGen Algorithm

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Gutiérrez Avilés, David
Rubio Escudero, Cristina
Riquelme Santos, José Cristóbal
Departamento: Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Fecha: 2011
ISBN/ISSN: 978-1-4577-1676-8
Tipo de documento: Ponencia
Resumen: The analysis of microarray data is a computational challenge due to the characteristics of these data. Clustering techniques are widely applied to create groups of genes that exhibit a similar behavior under the conditions tested. Biclustering emerges as an improvement of classical clustering since it relaxes the constraints for grouping allowing genes to be evaluated only under a subset of the conditions and not under all of them. However, this technique is not appropriate for the analysis of temporal microarray data in which the genes are evaluated under certain conditions at several time points. In this paper, we propose the TriGen algorithm, which finds triclusters that take into account the experimental conditions and the time points, using evolutionary computation, in particular genetic algorithms, enabling the evaluation of the gene’s behavior under subsets of conditions and of time points.
Tamaño: 294.3Kb
Formato: PDF

URI: http://hdl.handle.net/11441/42217

DOI: http://dx.doi.org/10.1109/ISDA.2011.6121768

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones