Repositorio de producción científica de la Universidad de Sevilla

Compositions and convex combinations of asymptotically regular firmly nonexpansive mappings are also asymptotically regular

Opened Access Compositions and convex combinations of asymptotically regular firmly nonexpansive mappings are also asymptotically regular

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Bauschke, Heinz H,
Martín Márquez, Victoria
Moffat, Sarah M.
Wang, Xianfu
Departamento: Universidad de Sevilla. Departamento de Análisis Matemático
Fecha: 2012
Publicado en: Fixed Point Theory and Applications, 2012
Tipo de documento: Artículo
Resumen: Because of Minty’s classical correspondence between firmly nonexpansive mappings and maximally monotone operators, the notion of a firmly nonexpansive mapping has proven to be of basic importance in fixed point theory, monotone operator theory, and convex optimization. In this note, we show that if finitely many firmly nonexpansive mappings defined on a real Hilbert space are given and each of these mappings is asymptotically regular, which is equivalent to saying that they have or “almost have” fixed points, then the same is true for their composition. This significantly generalizes the result by Bauschke from 2003 for the case of projectors (nearest point mappings). The proof resides in a Hilbert product space and it relies upon the Brezis-Haraux range approximation result. By working in a suitably scaled Hilbert product space, we also establish the asymptotic regularity of convex.
Cita: Bauschke, H.H., Martín Márquez, V., Moffat, S.M. y Wang, X. (2012). Compositions and convex combinations of asymptotically regular firmly nonexpansive mappings are also asymptotically regular. Fixed Point Theory and Applications, 2012
Tamaño: 403.8Kb
Formato: PDF

URI: http://hdl.handle.net/11441/41838

DOI: http://dx.doi.org/10.1186/1687-1812-2012-53

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones