Repositorio de producción científica de la Universidad de Sevilla

Compositional hypercyclicity equals supercyclicity

Opened Access Compositional hypercyclicity equals supercyclicity
Estadísticas
Icon
Exportar a
Autor: Bernal González, Luis
Bonilla Ramírez, Antonio Lorenzo
Calderón Moreno, María del Carmen
Departamento: Universidad de Sevilla. Departamento de Análisis Matemático
Fecha: 2007
Publicado en: Houston Journal of Mathematics, 33 (2), 581-591.
Tipo de documento: Artículo
Resumen: In this note it is proved that the sequence of composition operators generated by automorphisms of a simply connected domain strictly contained in the complex plane is hypercyclic –that is, possesses some dense orbit– if and only if it is supercyclic –i.e., possesses some dense projective orbit–. When the domain is the full complex plane, a result in this direction is also obtained. In addition, a number of statements about the corresponding cyclicity properties of single composition operators are either proved directly or extracted as a consequence
Cita: Bernal González, L., Bonilla Ramírez, A.L. y Calderón Moreno, M.d.C. (2007). Compositional hypercyclicity equals supercyclicity. Houston Journal of Mathematics, 33 (2), 581-591.
Tamaño: 226.0Kb
Formato: PDF

URI: http://hdl.handle.net/11441/41788

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones