Repositorio de producción científica de la Universidad de Sevilla

A SVM and k-NN Restricted Stacking to Improve Land Use and Land Cover Classification

 

Advanced Search
 
Opened Access A SVM and k-NN Restricted Stacking to Improve Land Use and Land Cover Classification
Cites

Show item statistics
Icon
Export to
Author: García Gutiérrez, Jorge
Mateos García, Daniel
Riquelme Santos, José Cristóbal
Department: Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Date: 2010
Published in: Hybrid Artificial Intelligence Systems, Lecture Notes in Computer Science, Volume 6077, pp 493-500
Document type: Chapter of Book
Abstract: Land use and land cover (LULC) maps are remote sensing products that are used to classify areas into different landscapes. The newest techniques have been applied to improve the final LULC classification and most of them are based on SVM classifiers. In this paper, a new method based on a multiple classifiers ensemble to improve LULC map accuracy is shown. The method builds a statistical raster from LIDAR and image fusion data following a pixel-oriented strategy. Then, the pixels from a training area are used to build a SVM and k-NN restricted stacking taking into account the special characteristics of spatial data. A comparison between a SVM and the restricted stacking is carried out. The results of the tests show that our approach improves the results in the context of the real data from a riparian area of Huelva (Spain).
Size: 102.2Kb
Format: PDF

URI: http://hdl.handle.net/11441/40522

DOI: http://dx.doi.org/10.1007/978-3-642-13803-4_61

This work is under a Creative Commons License: 
Attribution-NonCommercial-NoDerivatives 4.0 Internacional

This item appears in the following Collection(s)