Repositorio de producción científica de la Universidad de Sevilla

Evolutionary q-Gaussian Radial Basis Functions for Improving Prediction Accuracy of Gene Classification Using Feature Selection

Opened Access Evolutionary q-Gaussian Radial Basis Functions for Improving Prediction Accuracy of Gene Classification Using Feature Selection

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Fernández Navarro, Francisco
Hervás Martínez, César
Gutiérrez, Pedro Antonio
Ruiz Sánchez, Roberto
Riquelme Santos, José Cristóbal
Departamento: Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Fecha: 2010
Publicado en: Artificial Neural Networks – ICANN 2010, Lecture Notes in Computer Science, Volume 6352, pp 327-336
Tipo de documento: Capítulo de Libro
Resumen: This paper proposes a Radial Basis Function Neural Network (RBFNN) which reproduces different Radial Basis Functions (RBFs) by means of a real parameter q, named q-Gaussian RBFNN. The architecture, weights and node topology are learnt through a Hybrid Algorithm (HA) with the iRprop + algorithm as the local improvement procedure. In order to test its overall performance, an experimental study with four gene microarray datasets with two classes taken from bioinformatic and biomedical domains is presented. The Fast Correlation–Based Filter (FCBF) was applied in order to identify salient expression genes from thousands of genes in microarray data that can directly contribute to determining the class membership of each pattern. After different gene subsets were obtained, the proposed methodology was performed using the selected gene subsets as the new input variables. The results confirm that the q-Gaussian RBFNN classifier leads to promising improvement on accuracy.
Tamaño: 168.8Kb
Formato: PDF

URI: http://hdl.handle.net/11441/40516

DOI: http://dx.doi.org/10.1007/978-3-642-15819-3_43

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones