Repositorio de producción científica de la Universidad de Sevilla

Homological computation using spanning trees


Advanced Search

Show simple item record

dc.creator Molina Abril, Helena
dc.creator Real Jurado, Pedro 2015-12-15T11:14:28Z 2015-12-15T11:14:28Z 2009
dc.description.abstract We introduce here a new F2 homology computation algorithm based on a generalization of the spanning tree technique on a finite 3-dimensional cell complex K embedded in ℝ3. We demonstrate that the complexity of this algorithm is linear in the number of cells. In fact, this process computes an algebraic map φ over K, called homology gradient vector field (HGVF), from which it is possible to infer in a straightforward manner homological information like Euler characteristic, relative homology groups, representative cycles for homology generators, topological skeletons, Reeb graphs, cohomology algebra, higher (co)homology operations, etc. This process can be generalized to others coefficients, including the integers, and to higher dimension. es
dc.format application/pdf es
dc.language.iso eng es
dc.relation.ispartof Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, Lecture Notes in Computer Science, Vol. 5856 p. 272-278 es
dc.rights Atribución-NoComercial-CompartirIgual 4.0 Internacional *
dc.rights.uri *
dc.subject Cell complex chain homotopy digital volume homology gradient vector field tree spanning tree es
dc.title Homological computation using spanning trees es
dc.type info:eu-repo/semantics/bookPart es
dc.type.version info:eu-repo/semantics/submittedVersion es
dc.rights.accessrights info:eu-repo/semantics/openAccess es
dc.contributor.affiliation Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII) es
dc.identifier.doi es
Size: 191.4Kb
Format: PDF

This item appears in the following Collection(s)

Show simple item record