Repositorio de producción científica de la Universidad de Sevilla

# Uniqueness of solution for the 2D Primitive Equations with friction condition on the bottom

 dc.creator Bresch, Didier dc.creator Guillén González, Francisco Manuel dc.creator Masmoudi, Nader dc.creator Rodríguez Bellido, María Ángeles dc.date.accessioned 2015-07-10T10:56:15Z dc.date.available 2015-07-10T10:56:15Z dc.date.issued 2001 dc.identifier.uri http://hdl.handle.net/11441/26764 dc.description.abstract Uniqueness of solution for the Primitive Equations with Dirichlet conditions on the bottom is an open problem even in 2D domains. In this work we prove a result of additional regularity for a weak solution v for the Primitive Equations when we replace Dirichlet boundary conditions by friction conditions. This allows to obtain uniqueness of weak solution global in time, for such a system [3]. Indeed, we show weak regularity for the vertical derivative of the solution, ∂zv for all time. This is because this derivative verifies a linear pde of convection-diffusion type with convection velocity v, and the pressure belongs to a L 2 -space in time with values in a weighted space. es dc.format application/pdf es dc.language.iso eng es dc.relation.ispartof VII Jornadas Zaragoza-Pau de Matemática Aplicada y Estadística, 2001, Jaca (Huesca, España), 135-143 es dc.rights Attribution-NonCommercial-NoDerivatives 4.0 Internacional * dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/ * dc.subject Boundary conditions of type Navier es dc.subject 2D Primitive Equations es dc.subject Uniqueness es dc.title Uniqueness of solution for the 2D Primitive Equations with friction condition on the bottom es dc.type info:eu-repo/semantics/conferenceObject es dc.rights.accessrights info:eu-repo/semantics/openAccess dc.contributor.affiliation Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico es dc.relation.publisherversion http://www.unizar.es/galdeano/actas_pau/PDF/135.pdf es dc.identifier.idus https://idus.us.es/xmlui/handle/11441/26764
Size: 124.0Kb
Format: PDF