Repositorio de producción científica de la Universidad de Sevilla

Uniqueness of solution for the 2D Primitive Equations with friction condition on the bottom


Advanced Search

Show simple item record

dc.creator Bresch, Didier
dc.creator Guillén González, Francisco Manuel
dc.creator Masmoudi, Nader
dc.creator Rodríguez Bellido, María Ángeles 2015-07-10T10:56:15Z 2015-07-10T10:56:15Z 2001
dc.description.abstract Uniqueness of solution for the Primitive Equations with Dirichlet conditions on the bottom is an open problem even in 2D domains. In this work we prove a result of additional regularity for a weak solution v for the Primitive Equations when we replace Dirichlet boundary conditions by friction conditions. This allows to obtain uniqueness of weak solution global in time, for such a system [3]. Indeed, we show weak regularity for the vertical derivative of the solution, ∂zv for all time. This is because this derivative verifies a linear pde of convection-diffusion type with convection velocity v, and the pressure belongs to a L 2 -space in time with values in a weighted space. es
dc.format application/pdf es
dc.language.iso eng es
dc.relation.ispartof VII Jornadas Zaragoza-Pau de Matemática Aplicada y Estadística, 2001, Jaca (Huesca, España), 135-143 es
dc.rights Attribution-NonCommercial-NoDerivatives 4.0 Internacional *
dc.rights.uri *
dc.subject Boundary conditions of type Navier es
dc.subject 2D Primitive Equations es
dc.subject Uniqueness es
dc.title Uniqueness of solution for the 2D Primitive Equations with friction condition on the bottom es
dc.type info:eu-repo/semantics/conferenceObject es
dc.rights.accessrights info:eu-repo/semantics/openAccess
dc.contributor.affiliation Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico es
dc.relation.publisherversion es
Size: 124.0Kb
Format: PDF

This item appears in the following Collection(s)

Show simple item record