Repositorio de producción científica de la Universidad de Sevilla

Uniqueness of solution for the 2D Primitive Equations with friction condition on the bottom

Opened Access Uniqueness of solution for the 2D Primitive Equations with friction condition on the bottom
Estadísticas
Icon
Exportar a
Autor: Bresch, Didier
Guillén González, Francisco Manuel
Masmoudi, Nader
Rodríguez Bellido, María Ángeles
Departamento: Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico
Fecha: 2001
Publicado en: VII Jornadas Zaragoza-Pau de Matemática Aplicada y Estadística, 2001, Jaca (Huesca, España), 135-143
Tipo de documento: Ponencia
Resumen: Uniqueness of solution for the Primitive Equations with Dirichlet conditions on the bottom is an open problem even in 2D domains. In this work we prove a result of additional regularity for a weak solution v for the Primitive Equations when we replace Dirichlet boundary conditions by friction conditions. This allows to obtain uniqueness of weak solution global in time, for such a system [3]. Indeed, we show weak regularity for the vertical derivative of the solution, ∂zv for all time. This is because this derivative verifies a linear pde of convection-diffusion type with convection velocity v, and the pressure belongs to a L 2 -space in time with values in a weighted space.
Tamaño: 124.0Kb
Formato: PDF

URI: http://hdl.handle.net/11441/26764

Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones