Repositorio de producción científica de la Universidad de Sevilla

Forced nonlinear Schrödinger equation with arbitrary nonlinearity

Opened Access Forced nonlinear Schrödinger equation with arbitrary nonlinearity

Citas

buscar en

Estadísticas
Icon
Exportar a
Autor: Cooper, Fred
Khare, Avinash
Quintero, Niurka R.
Mertens, Franz G.
Saxena, Avadh
Departamento: Universidad de Sevilla. Departamento de Física Aplicada I
Fecha: 2012
Publicado en: Physical Review E, 2012, 85(4), 046607: 1-24
Tipo de documento: Artículo
Resumen: We consider the nonlinear Schrödinger equation (NLSE) in 1+1 dimension with scalar-scalar self-interaction g2κ+1(ψ☆ψ)κ+1 in the presence of the external forcing terms of the form re−i(kx+θ)−δψ. We find new exact solutions for this problem and show that the solitary wave momentum is conserved in a moving frame where vk=2k. These new exact solutions reduce to the constant phase solutions of the unforced problem when r→0. In particular we study the behavior of solitary wave solutions in the presence of these external forces in a variational approximation which allows the position, momentum, width, and phase of these waves to vary in time. We show that the stationary solutions of the variational equations include a solution close to the exact one and we study small oscillations around all the stationary solutions. We postulate that the dynamical condition for instability is that dp(t)/dq̇ (t)<0, where p(t) is the normalized canonical momentum p(t)=1M(t)∂L∂q̇ , and q̇ (t) is the solitary w...
[Ver más]
Tamaño: 1.752Mb
Formato: PDF

URI: http://hdl.handle.net/11441/23527

DOI: 10.1103/PhysRevE.85.046607

Ver versión del editor
Ver versión del editor

Mostrar el registro completo del ítem


Esta obra está bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Este registro aparece en las siguientes colecciones