Login | Contact | Help |
 
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of idUSCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsFunding agenciesThis CommunityBy Issue DateAuthorsTitlesSubjectsFunding agencies

Services

My AccountLoginRegisterDeposit your workApplication to deposit in idUSRequest the deposit to the LibraryMore info

Discover

AuthorLefèvre, Pascal (5)
Li, Daniel (5)
Queffélec, Hervé (5)
Rodríguez Piazza, Luis (5)
Subject
Hardy-Orlicz space (5)
Bergman-Orlicz space (4)Composition operator (4)Carleson function (2)Carleson measure (2)Compactness (2)Nevanlinna counting function (2)Schatten classes (2)Absolutely summing operator (1)Bergman space (1)... View MoreDate Issued2011 (2)2010 (1)2012 (1)2013 (1)Funding agencyMinisterio de Ciencia e Innovación (MICIN). España (2)Ministerio de Educación y Ciencia (MEC). España (1)Has file(s)Yes (5)

Policies

Institutional statementBerlin DeclarationidUS Policies

Gatherers

Recolecta
HispanaEuropeana
BaseGoogle Académico
OAIsterOpenAIRE

Links of interest

Sherpa/Romeo
DulcineaOpenDOAR
Creative Commons
Search 
  •   idUS
  • Investigación
  • Ciencias
  • Análisis Matemático
  • Search
  •   idUS
  • Investigación
  • Ciencias
  • Análisis Matemático
  • Search

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

Now showing items 1-5 of 5

  • Sort Options:
  • Relevance
  • Title Asc
  • Title Desc
  • Issue Date Asc
  • Issue Date Desc
  • Results Per Page:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Icon

The canonical injection of the Hardy-Orlicz space HΨ into the Bergman–Orlicz space BΨ [Article]

Lefèvre, Pascal; Li, Daniel; Queffélec, Hervé; Rodríguez Piazza, Luis (Polish Academy of Sciences, Institute of Mathematics, 2011)
We study the canonical injection from the Hardy-Orlicz space HΨ into the Bergman–Orlicz space BΨ..
Icon

Compact composition operators on the Dirichlet space and capacity of sets of contact points [Article]

Lefèvre, Pascal; Li, Daniel; Queffélec, Hervé; Rodríguez Piazza, Luis (Elsevier, 2013-02-15)
We prove several results about composition operators on the Dirichlet space D⁎. For every compact set K⊆∂D of logarithmic capacity , there exists a Schur function φ both in the disk algebra A(D) and in D⁎ such that the ...
Icon

Some revisited results about composition operators on Hardy spaces [Article]

Lefèvre, Pascal; Li, Daniel; Queffélec, Hervé; Rodríguez Piazza, Luis (European Mathematical Society, 2012)
We generalize, on one hand, some results known for composition operators on Hardy spaces to the case of Hardy-Orlicz spaces HΨ: construction of a “slow” Blaschke product giving a non-compact composition operator on ...
Icon

Composition operators on Hardy-Orlicz spaces [Article]

Lefèvre, Pascal; Li, Daniel; Queffélec, Hervé; Rodríguez Piazza, Luis (American Mathematical Society, 2010)
We investigate composition operators on Hardy-Orlicz spaces when the Orlicz function Ψ grows rapidly: compactness, weak compactness, to be p-summing, order bounded,..., and show how these notions behave according to the ...
Icon

Compact composition operators on Hardy-Orlicz and Bergman-Orlicz spaces [Article]

Lefèvre, Pascal; Li, Daniel; Queffélec, Hervé; Rodríguez Piazza, Luis (Springer, 2011-09)
We construct an analytic self-map ϕ of the unit disk and an Orlicz function Ψ for which the composition operator of symbol ϕ is compact on the Hardy-Orlicz space HΨ, but not on the Bergman-Orlicz space BΨ. For that, we first ...
  • About idUS
  • Deposit your work
  • Services
  • Distribution License
  • FAQS
  • idUS in figures

  • idUS is a DSpace version 6.2 implementation and is managed by Biblioteca de la Universidad de Sevilla
  • Last update: 20 November 2019
Contact  |  Help

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional License.

Logo CrueCreative Commons LicenseIcono de conformidad con el Nivel Doble-A, de las Directrices de Accesibilidad para el Contenido Web 1.0 del W3C-WAI
Copyright © 2014. idUS. Depósito de Investigación de la Universidad de Sevilla.
     

     

    This website uses cookies to improve your user experience. If you continue browsing, we understand that you accept our terms of use.  More information.

    OK