Mostrar el registro sencillo del ítem

Artículo

dc.creatorHu, D.es
dc.creatorNardon, E.es
dc.creatorLehnen, M.es
dc.creatorHuijsmans, G.T.A.es
dc.creatorVugt, D.C. vanes
dc.creatorJet Contributorses
dc.creatorGarcía Muñoz, Manueles
dc.date.accessioned2020-07-14T13:36:22Z
dc.date.available2020-07-14T13:36:22Z
dc.date.issued2018-12
dc.identifier.citationHu, D., Nardon, E., Lehnen, M., Huijsmans, G.T.A., van Vugt, D.C., Jet Contributors, y García Muñoz, M. (2018). 3D non-linear MHD simulation of the MHD response and density increase as a result of shattered pellet injection. Nuclear Fusion, 58, 1-18.
dc.identifier.issn1741-4326es
dc.identifier.urihttps://hdl.handle.net/11441/99386
dc.description.abstractThe MHD response and the penetration of a deuterium shattered pellet into a JET plasma is investigated via the non-linear reduced MHD code JOREK with the neutral gas shielding (NGS) ablation model. The dominant MHD destabilizing mechanism by the injection is identified as the local helical cooling at each rational surface, as opposed to the global current profile contraction. Thus the injected fragments destabilize each rational surface as they pass through them. The injection penetration is found to be much better compared to MGI, with the convective transport caused by core MHD instabilities (e.g. 1/1 kink) contributing significantly to the core penetration. Moreover, the injection with realistic JET SPI system configurations is simulated in order to provide some insights into future operations, and the impact on the total assimilation and penetration depth of varying injection parameters such as the injection velocity or fineness of shattering is assessed. Further, the effect of changing the target equilibrium temperature or q profile on the assimilation and penetration is also investigated. Such analysis will form the basis of further investigation into a desirable configuration for the future SPI system in ITER.es
dc.description.sponsorshipEURATOM 633053es
dc.formatapplication/pdfes
dc.format.extent19 p.es
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofNuclear Fusion, 58, 1-18.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectTokamakes
dc.subjectMHD instabilityes
dc.subjectShattered pellet injectiones
dc.subjectJOREKes
dc.subjectReduced MHDes
dc.subjectSimulationes
dc.subjectDisruption mitigationes
dc.title3D non-linear MHD simulation of the MHD response and density increase as a result of shattered pellet injectiones
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física Atómica, Molecular y Nucleares
dc.relation.projectID633053es
dc.relation.publisherversionhttps://doi.org/10.1088/1741-4326/aae614es
dc.identifier.doi10.1088/1741-4326/aae614es
dc.contributor.groupUniversidad de Sevilla. RNM138: Física Nuclear Aplicadaes
dc.journaltitleNuclear Fusiones
dc.publication.volumen58es
dc.publication.initialPage1es
dc.publication.endPage18es

FicherosTamañoFormatoVerDescripción
Hu_2018_Nucl._Fusion_58_126025.pdf6.269MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional