Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Artículo
Shortcut sets for plane Euclidean networks (Extended abstract)
Autor/es | Cáceres, José
Garijo Royo, Delia González, A. Márquez Pérez, Alberto Puertas, María Luz Ribeiro, Paula |
Departamento | Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII) |
Fecha de publicación | 2016 |
Fecha de depósito | 2020-06-21 |
Publicado en |
|
Resumen | We study the problem of augmenting the locus N of a plane Euclidean network N
by inserting iteratively a finite set of segments, called shortcut set, while reducing
the diameter of the locus of the resulting network. ... We study the problem of augmenting the locus N of a plane Euclidean network N by inserting iteratively a finite set of segments, called shortcut set, while reducing the diameter of the locus of the resulting network. We first characterize the existence of shortcut sets, and compute shortcut sets in polynomial time providing an upper bound on their size. Then, we analyze the role of the convex hull of N when inserting a shortcut set. As a main result, we prove that one can always determine in polynomial time whether inserting only one segment suffices to reduce the diameter. |
Agencias financiadoras | Ministerio de Economía y Competitividad (MINECO). España Junta de Andalucía |
Identificador del proyecto | MTM2014-60127-P
FQM-0164 |
Cita | Cáceres, J., Garijo Royo, D., González, A., Márquez Pérez, A., Puertas, M.L. y Ribeiro, P. (2016). Shortcut sets for plane Euclidean networks (Extended abstract). Electronic Notes in Discrete Mathematics, 54 (october 2016), 163-168. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
Shortcut sets for plane Euclidean ... | 100.0Kb | [PDF] | Ver/ | |