Show simple item record

Article

dc.contributor.editorSánchez Marcos, Enriquees
dc.creatorPérez Conesa, Sergioes
dc.creatorTorrico Perdomo, Francisco Migueles
dc.creatorMartínez Fernández, José Manueles
dc.creatorRodríguez Pappalardo, Rafaeles
dc.creatorSánchez Marcos, Enriquees
dc.date.accessioned2020-04-23T07:58:24Z
dc.date.available2020-04-23T07:58:24Z
dc.date.issued2016-12
dc.identifier.citationPérez Conesa, S., Torrico Perdomo, F.M., Martínez Fernández, J.M., Rodríguez Pappalardo, R. y Sánchez Marcos, E. (2016). A hydrated ion model of [UO2]2+ in water: Structure, dynamics, and spectroscopy from classical molecular dynamics. The Journal of Chemical Physics, 145 (22), 224502.
dc.identifier.issn0021-9606es
dc.identifier.issn1089-7690es
dc.identifier.urihttps://hdl.handle.net/11441/95626
dc.description.abstractA new ab initio interaction potential based on the hydrated ion concept has been developed to obtain the structure, energetics, and dynamics of the hydration of uranyl in aqueous solution. It is the first force field that explicitly parameterizes the interaction of the uranyl hydrate with bulk water molecules to accurately define the second-shell behavior. The [UO2(H2O)5 ] 2+ presents a first hydration shell U–O average distance of 2.46 Å and a second hydration shell peak at 4.61 Å corresponding to 22 molecules using a coordination number definition based on a multisite solute cavity. The second shell solvent molecules have longer mean residence times than those corresponding to the divalent monatomic cations. The axial regions are relatively de-populated, lacking direct hydrogen bonding to apical oxygens. Angle-solved radial distribution functions as well as the spatial distribution functions show a strong anisotropy in the ion hydration. The [UO2(H2O)5 ] 2+ solvent structure may be regarded as a combination of a conventional second hydration shell in the equatorial and bridge regions, and a clathrate-like low density region in the axial region. Translational diffusion coefficient, hydration enthalpy, power spectra of the main vibrational modes, and the EXAFS spectrum simulated from molecular dynamics trajectories agree fairly well with the experiment.es
dc.description.sponsorshipJunta de Andalucía de España, Proyecto de Excelencia-P11-FQM 7607es
dc.formatapplication/pdfes
dc.format.extent12 p.es
dc.language.isoenges
dc.publisherAIP Publishinges
dc.relation.ispartofThe Journal of Chemical Physics, 145 (22), 224502.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleA hydrated ion model of [UO2]2+ in water: Structure, dynamics, and spectroscopy from classical molecular dynamicses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Química Físicaes
dc.relation.projectIDP11-FQM 7607es
dc.relation.publisherversionhttps://aip.scitation.org/doi/10.1063/1.4971432es
dc.identifier.doi10.1063/1.4971432es
dc.journaltitleThe Journal of Chemical Physicses
dc.publication.volumen145es
dc.publication.issue22es
dc.publication.initialPage224502es
dc.contributor.funderJunta de Andalucía

FilesSizeFormatViewDescription
1.4971432.pdf6.527MbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional