Mostrar el registro sencillo del ítem

Artículo

dc.contributor.advisor
dc.creatorBudarapu, Pattabhi Ramaiahes
dc.creatorReinoso Cuevas, José Antonioes
dc.creatorPaggi, Marcoes
dc.date.accessioned2020-03-25T16:20:40Z
dc.date.available2020-03-25T16:20:40Z
dc.date.issued2017-06
dc.identifier.citationBudarapu, P.R., Reinoso Cuevas, J.A. y Paggi, M. (2017). Concurrently coupled solid shell-based adaptive multiscale method for fracture. Computer Methods in Applied Mechanics and Engineering, 319, 338-365.
dc.identifier.issnISSN: 0045-7825es
dc.identifier.issnESSN: 1879-2138es
dc.identifier.urihttps://hdl.handle.net/11441/94538
dc.descriptionArtículo Open Access en el sitio web del editor. Pago por publicar en abierto.es
dc.description.abstractA solid shell-based adaptive atomistic–continuum numerical method is herein proposed to simulate complex crack growth patterns in thin-walled structures. A hybrid solid shell formulation relying on the combined use of the enhanced assumed strain (EAS) and the assumed natural strain (ANS) methods has been considered to efficiently model the material in thin structures at the continuum level. The phantom node method (PNM) is employed to model the discontinuities in the bulk. The discontinuous solid shell element is then concurrently coupled with a molecular statics model placed around the crack tip. The coupling between the coarse scale and the fine scale is realized through the use of ghost atoms, whose positions are interpolated from the coarse scale solution and enforced as boundary conditions to the fine scale model. In the proposed numerical scheme, the fine scale region is adaptively enlarged as the crack propagates and the region behind the crack tip is adaptively coarsened in order to reduce the computation costs. An energy criterion is used to detect the crack tip location. All the atomistic simulations are carried out using the LAMMPS software. A computational framework has been developed in MATLAB to trigger LAMMPS through system command. This allows a two way interaction between the coarse and fine scales in MATLAB platform, where the boundary conditions to the fine region are extracted from the coarse scale, and the crack tip location from the atomistic model is transferred back to the continuum scale. The developed framework has been applied to study crack growth in the energy minimization problems. Inspired by the influence of fracture on current–voltage characteristics of thin Silicon photovoltaic cells, the cubic diamond lattice structure of Silicon is used to model the material in the fine scale region, whilst the Tersoff potential function is employed to model the atom–atom interactions. The versatility and robustness of the proposed methodology is demonstrated by means of several fracture applications.es
dc.description.sponsorshipUnión Europea ERC 306622
dc.description.sponsorshipMinisterio de Economía y Competitividad DPI2012-37187, MAT2015-71036-P y MAT2015-71309-P
dc.description.sponsorshipJunta de Andalucía P11-TEP-7093 y P12-TEP -1050
dc.formatapplication/pdfes
dc.format.extent28 p.es
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofComputer Methods in Applied Mechanics and Engineering, 319, 338-365.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMultiscale methodses
dc.subjectSolid shell finite elementes
dc.subjectPhantom node method for fracturees
dc.subjectAtomistic simulationses
dc.subjectAdaptivityes
dc.subjectSilicon solar cellses
dc.titleConcurrently coupled solid shell-based adaptive multiscale method for fracturees
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.relation.projectIDERC 306622es
dc.relation.projectIDDPI2012-37187es
dc.relation.projectIDMAT2015-71036-Pes
dc.relation.projectIDMAT2015-71309-Pes
dc.relation.projectIDP11-TEP-7093es
dc.relation.projectIDP12-TEP -1050es
dc.relation.publisherversionhttps://doi.org/10.1016/j.cma.2017.02.023es
dc.identifier.doi10.1016/j.cma.2017.02.023es
dc.contributor.groupUniversidad de Sevilla. TEP131: Elasticidad y Resistencia de Materialeses
dc.journaltitleComputer Methods in Applied Mechanics and Engineeringes
dc.publication.volumen319es
dc.publication.initialPage338es
dc.publication.endPage365es
dc.identifier.sisius21325707
dc.contributor.funderEuropean Union (UE)
dc.contributor.funderMinisterio de Economía y Competitividad (MINECO). España
dc.contributor.funderJunta de Andalucía

FicherosTamañoFormatoVerDescripción
Concurrently coupled solid ...8.194MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional