Mostrar el registro sencillo del ítem

Artículo

dc.creatorPastor, José M.es
dc.creatorBorges, Nunoes
dc.creatorPagán, Juan P.es
dc.creatorCastaño Cerezo, Saraes
dc.creatorCsonka, Laszlo N.es
dc.creatorGoodner, Bradley W.es
dc.creatorReynolds, Kathryn A.es
dc.creatorGonçalves, Luís G.es
dc.creatorArgandoña Bertrán, Montserrates
dc.creatorNieto Gutiérrez, Joaquín Josées
dc.creatorVargas Macías, Carmenes
dc.creatorBernal, Vicentees
dc.creatorCánovas, Manueles
dc.date.accessioned2020-03-09T12:38:36Z
dc.date.available2020-03-09T12:38:36Z
dc.date.issued2019
dc.identifier.citationPastor, J.M., Borges, N., Pagán, J.P., Castaño Cerezo, S., Csonka, L.N., Goodner, B.W.,...,Cánovas, M. (2019). Fructose metabolism in Chromohalobacter salexigens: interplay between the Embden–Meyerhof–Parnas and Entner–Doudoroff pathways. Microbial Cell Factories, 18 (134), 1-15.
dc.identifier.issn1475-2859es
dc.identifier.urihttps://hdl.handle.net/11441/94039
dc.description.abstractBackground The halophilic bacterium Chromohalobacter salexigens metabolizes glucose exclusively through the Entner–Doudoroff (ED) pathway, an adaptation which results in inefficient growth, with significant carbon overflow, especially at low salinity. Preliminary analysis of C. salexigens genome suggests that fructose metabolism could proceed through the Entner–Doudoroff and Embden–Meyerhof–Parnas (EMP) pathways. In order to thrive at high salinity, this bacterium relies on the biosynthesis and accumulation of ectoines as major compatible solutes. This metabolic pathway imposes a high metabolic burden due to the consumption of a relevant proportion of cellular resources, including both energy molecules (NADPH and ATP) and carbon building blocks. Therefore, the existence of more than one glycolytic pathway with different stoichiometries may be an advantage for C. salexigens. The aim of this work is to experimentally characterize the metabolism of fructose in C. salexigens. Results Fructose metabolism was analyzed using in silico genome analysis, RT-PCR, isotopic labeling, and genetic approaches. During growth on fructose as the sole carbon source, carbon overflow was not observed in a wide range of salt concentrations, and higher biomass yields were reached. We unveiled the initial steps of the two pathways for fructose incorporation and their links to central metabolism. While glucose is metabolized exclusively through the Entner–Doudoroff (ED) pathway, fructose is also partially metabolized by the Embden–Meyerhof–Parnas (EMP) route. Tracking isotopic label from [1-13C] fructose to ectoines revealed that 81% and 19% of the fructose were metabolized through ED and EMP-like routes, respectively. Activities of enzymes from both routes were demonstrated in vitro by 31P-NMR. Genes encoding predicted fructokinase and 1-phosphofructokinase were cloned and the activities of their protein products were confirmed. Importantly, the protein encoded by csal1534 gene functions as fructose bisphosphatase, although it had been annotated previously as pyrophosphate-dependent phosphofructokinase. The gluconeogenic rather than glycolytic role of this enzyme in vivo is in agreement with the lack of 6-phosphofructokinase activity previously described. Conclusions Overall, this study shows that C. salexigens possesses a greater metabolic flexibility for fructose catabolism, the ED and EMP pathways contributing to a fine balancing of energy and biosynthetic demands and, subsequently, to a more efficient metabolism.es
dc.description.sponsorshipUniversity of Murcia and University of Seville was supported by projects: BIO2015-63949-R, BIO2014-54411-C2-1-Res
dc.description.sponsorshipEuropa MINECO/FEDER RTI2018-094393-B-C21es
dc.description.sponsorshipFundación Séneca (Grant no. 19236/PI/14)es
dc.formatapplication/pdfes
dc.format.extent15 p.es
dc.language.isoenges
dc.publisherBMCes
dc.relation.ispartofMicrobial Cell Factories, 18 (134), 1-15.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject13C-NMRes
dc.subjectChromohalobacter salexigenses
dc.subjectEctoineses
dc.subjectEntner–Doudoroff pathwayes
dc.subjectFructose bisphosphatasees
dc.subjectFructose metabolismes
dc.subjectPyrophosphate-dependent 6-phosphofructokinasees
dc.titleFructose metabolism in Chromohalobacter salexigens: interplay between the Embden–Meyerhof–Parnas and Entner–Doudoroff pathwayses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Microbiología y Parasitologíaes
dc.relation.projectIDBIO2015-63949-Res
dc.relation.projectIDBIO2014-54411-C2-1-Res
dc.relation.projectIDRTI2018-094393-B-C21es
dc.relation.projectIDGrant no. 19236/PI/14es
dc.relation.publisherversionhttp://dx.doi.org/10.1186/s12934-019-1178-xes
dc.identifier.doi10.1186/s12934-019-1178-xes
dc.journaltitleMicrobial Cell Factorieses
dc.publication.volumen18es
dc.publication.issue134es
dc.publication.initialPage1es
dc.publication.endPage15es
dc.contributor.funderUniversidad de Murciaes
dc.contributor.funderUniversidad de Sevillaes
dc.contributor.funderMinisterio de Economía y Competitividad (MINECO). Españaes
dc.contributor.funderEuropean Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)es
dc.contributor.funderFundación Sénecaes

FicherosTamañoFormatoVerDescripción
pub12934_2019_Article_1178.pdf2.116MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional