idUS
Depósito de Investigación
Universidad de Sevilla
| | | BUS |
  • Español
Login | Contact | Help | Biblioteca USBUS |
  • Español
 
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of idUSCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsFunding agenciesAward-winning thesesAuthor profiles USThis CollectionBy Issue DateAuthorsTitlesSubjectsFunding agencies
My AccountLoginRegisterDeposit your workApplication to deposit in idUSRequest the deposit to the LibraryMore info
StatisticsGeneral statisticsView Usage Statistics
PoliciesInstitutional statementBerlin DeclarationidUS Policies
RecolectaOpenAIRE
HispanaEuropeana
Google AcadémicoBase
OAIsterCORE
DART-Europe E-theses PortalLA Referencia
Sherpa/RomeoDulcinea
OpenDOARCreative Commons
 
View Item 
  •   idUS
  • Investigación
  • Ingeniería y Arquitectura
  • Lenguajes y Sistemas Informáticos
  • Artículos (Lenguajes y Sistemas Informáticos)
  • View Item
  •   idUS
  • Investigación
  • Ingeniería y Arquitectura
  • Lenguajes y Sistemas Informáticos
  • Artículos (Lenguajes y Sistemas Informáticos)
  • View Item

Article

Acceso restringido
TAPON: a two-phase machine learning approach for semantic labelling

Author/sAyala Hernández, Daniel              
Hernández Salmerón, Inmaculada Concepción                
Ruiz Cortés, David                
Toro Bonilla, Miguel                
EditorRuiz Cortés, David                
DepartmentUniversidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Date2019-01-01
Published in Knowledge Based Systems, 163 (january 2019), 931-943.
AbstractThrough semantic labelling we enrich structured information from sources such as HTML pages, tables, or JSON files, with labels to integrate it into a local ontology. This process involves measuring some features of the ...
Through semantic labelling we enrich structured information from sources such as HTML pages, tables, or JSON files, with labels to integrate it into a local ontology. This process involves measuring some features of the information and then nding the classes that best describe it. The problem with current techniques is that they do not model relationships between classes. Their features fall short when some classes have very similar structures or textual formats. In order to deal with this problem, we have devised TAPON: a new semantic labelling technique that computes novel features that take into account the relationships. TAPON computes these features by means of a two-phase approach. In the first phase, we compute simple features and obtain a preliminary set of labels (hints). In the second phase, we inject our novel features and obtain a refined set of labels. Our experimental results show that our technique, thanks to our rich feature catalogue and novel modelling, achieves higher accuracy than other state-of-the-art techniques.
Project ID.TIN2016-75394-R  openaire
CitationAyala Hernández, D., Hernández Salmerón, I.C., Ruiz Cortés, D. y Toro Bonilla, M. (2019). TAPON: a two-phase machine learning approach for semantic labelling. Knowledge Based Systems, 163 (january 2019), 931-943.
10.1016/j.knosys.2018.10.017

Web of Science :  
 :  
  View Usage Statistics
 
Show full item record
FilesSizeFormatViewDescription
TAPON-KBS.pdf1.173MbIcon   [PDF] View/Open  
Logo Handlehttps://hdl.handle.net/11441/92772
DOIhttps://doi.org/10.1016/j.knosys.2018.10.017
  Editor´s version

This item appears in the following collection(s)
  • Artículos (Lenguajes y Sistemas Informáticos)

  • About idUS
  • Deposit your work
  • Services
  • Distribution License
  • FAQS
  • idUS in figures
Universidad de Sevilla
  • idUS is a DSpace implementation and is managed by Biblioteca de la Universidad de Sevilla.
  • Last update: 1 December 2022.
Contact  |  Help
The content of idUS is protected by Creative Commons 4.0 Internacional Licenses.
Creative Commons LicensesLevel AA conformance, W3C WAI Web Content Accessibility Guidelines 2.0Logo CrueLogo Handle
Copyright © 2015. idUS. Depósito de Investigación de la Universidad de Sevilla.
     

     

    This website only uses cookies for technical purposes, it does not receive or transfer personal data from users without their consent.  More information.

    Accept