Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Article
Hyers-Ulam stability for coupled random fixed point theorems and applications to periodic boundary value random problems
Author/s | Boudaoui, Ahmed
Caraballo Garrido, Tomás Blouhi, Tayeb |
Department | Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico |
Publication Date | 2019-09 |
Deposit Date | 2020-02-03 |
Published in |
|
Abstract | In this paper, we prove some existence, uniqueness and Hyers-Ulam stability results for the coupled random fixed point of a pair of contractive type random operators on separable complete metric spaces. The approach is ... In this paper, we prove some existence, uniqueness and Hyers-Ulam stability results for the coupled random fixed point of a pair of contractive type random operators on separable complete metric spaces. The approach is based on a new version of the Perov type fixed point theorem for contractions. Some applications to integral equations and to boundary value problems are also given. |
Project ID. | MTM2015-63723-P
P12-FQM-1492 |
Citation | Boudaoui, A., Caraballo Garrido, T. y Blouhi, T. (2019). Hyers-Ulam stability for coupled random fixed point theorems and applications to periodic boundary value random problems. Random Operators and Stochastic Equations, 27 (3), 143-152. |
Files | Size | Format | View | Description |
---|---|---|---|---|
Hyers-Ulam stability for coupled ... | 350.9Kb | [PDF] | View/ | |