Mostrar el registro sencillo del ítem

Tesis Doctoral

dc.contributor.advisorJiménez Fernández, Ángel Franciscoes
dc.contributor.advisorLinares Barranco, Alejandroes
dc.contributor.advisorJiménez Moreno, Gabrieles
dc.creatorTapiador Morales, Ricardoes
dc.date.accessioned2020-01-27T12:59:33Z
dc.date.available2020-01-27T12:59:33Z
dc.date.issued2019-12-13
dc.identifier.citationTapiador Morales, R. (2019). Neuromorphic deep convolutional neural network learning systems for FPGA in real time. (Tesis Doctoral Inédita). Universidad de Sevilla, Sevilla.
dc.identifier.urihttps://hdl.handle.net/11441/92356
dc.description.abstractDeep Learning algorithms have become one of the best approaches for pattern recognition in several fields, including computer vision, speech recognition, natural language processing, and audio recognition, among others. In image vision, convolutional neural networks stand out, due to their relatively simple supervised training and their efficiency extracting features from a scene. Nowadays, there exist several implementations of convolutional neural networks accelerators that manage to perform these networks in real time. However, the number of operations and power consumption of these implementations can be reduced using a different processing paradigm as neuromorphic engineering. Neuromorphic engineering field studies the behavior of biological and inner systems of the human neural processing with the purpose of design analog, digital or mixed-signal systems to solve problems inspired in how human brain performs complex tasks, replicating the behavior and properties of biological neurons. Neuromorphic engineering tries to give an answer to how our brain is capable to learn and perform complex tasks with high efficiency under the paradigm of spike-based computation. This thesis explores both frame-based and spike-based processing paradigms for the development of hardware architectures for visual pattern recognition based on convolutional neural networks. In this work, two FPGA implementations of convolutional neural networks accelerator architectures for frame-based using OpenCL and SoC technologies are presented. Followed by a novel neuromorphic convolution processor for spike-based processing paradigm, which implements the same behaviour of leaky integrate-and-fire neuron model. Furthermore, it reads the data in rows being able to perform multiple layers in the same chip. Finally, a novel FPGA implementation of Hierarchy of Time Surfaces algorithm and a new memory model for spike-based systems are proposed.es
dc.formatapplication/pdfes
dc.language.isoenges
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleNeuromorphic deep convolutional neural network learning systems for FPGA in real timees
dc.typeinfo:eu-repo/semantics/doctoralThesises
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadoreses
idus.format.extent125 p.es

FicherosTamañoFormatoVerDescripción
TesisDoctoral-RicardoTapiadorM ...37.53MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional