Mostrar el registro sencillo del ítem

Artículo

dc.creatorTrueba Muñoz, Palomaes
dc.creatorChicardi Augusto, Ernestoes
dc.creatorRodríguez-Ortiz, José Antonioes
dc.creatorTorres Hernández, Yadires
dc.date.accessioned2020-01-13T08:50:39Z
dc.date.available2020-01-13T08:50:39Z
dc.date.issued2020
dc.identifier.citationTrueba Muñoz, P., Chicardi Augusto, E., Rodríguez-Ortiz, J.A. y Torres Hernández, Y. (2020). Development and implementation of a sequential compaction device to obtain radial graded porosity cylinders. Journal of Manufacturing Processes, 50, 142-153.
dc.identifier.issn1526-6125es
dc.identifier.issn1878-6642es
dc.identifier.urihttps://hdl.handle.net/11441/91458
dc.description.abstractIn this work, a sequential compaction device has been successfully developed and implemented to produce commercially pure titanium cylinders, in which the porosity increases from the core to the surface or vice versa. The radial graded porosity (three concentric layers) have been obtained by conventional powder-metallurgy (PM) route and/or space-holder techniques. In the first way, controlling the sequential and differentiated degree of compaction of the layers, starting from the core of the specimen to the external layer. In the second way, by the control of the nature, amount, size and morphology of the spacer in each layer of the titanium cylinder. This device is interesting for the manufacture of implants, particularly for partial replacements of the cortical bone tissues, which replicates the hierarchical porous structure of the bone tissues. Furthermore, the use of this novel device could be extended to other applications that require materials with radial graded porosity, such as self-lubricated bearings, CO2 capture systems, substrates for catalysis, high efficiency heat sinks and surrogate materials to simulate irradiated nuclear fuel. Particularly, for bone replacement implants, the best result was obtained with the soft gradient porosity design (20, 40 and 60 vol. % of the porosity in the core, inner shell and external shell, respectively) and a size range of the spacer between 100–200 μm. In this context, the titanium cylinders manufactured with sodium chloride (NaCl) as spacer showed a Young's modulus of 26 GPa, and a yield strength of 278 MPa. On the other hand, those obtained with ammonium bicarbonate (NH4HCO3) as spacer presented a Young's modulus of 32.3 GPa and a yield strength of 321 MPa. Both designs present a good biomechanical and biofunctional balance, due to the high mechanical strength provided by the core, and the resolution of the stress shielding by the external layer, which also favours the growth of the bone tissue into the implant, due to the amount, size and interconnection of the pores.es
dc.description.sponsorshipMinistry of Economy and Competitiveness of the General State Administration of Spain grant MAT2015-71284-Pes
dc.description.sponsorshipJunta de Andalucía (Spain) Project Ref P12-TEP-140es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofJournal of Manufacturing Processes, 50, 142-153.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectGradient porous materialses
dc.subjectBone implantses
dc.subjectPorous titaniumes
dc.subjectSequential compaction devicees
dc.subjectRadial graded porosityes
dc.titleDevelopment and implementation of a sequential compaction device to obtain radial graded porosity cylinderses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ingeniería y Ciencia de los Materiales y del Transportees
dc.relation.projectIDMAT2015-71284-Pes
dc.relation.projectIDP12-TEP-140es
dc.date.embargoEndDate2022-03-01
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1526612519304311es
dc.identifier.doi10.1016/j.jmapro.2019.12.011es
dc.contributor.groupUniversidad de Sevilla. TEP123: Metalurgia e Ingeniería de los Materialeses
idus.format.extent18 p.es
idus.validador.notaPosprintes
dc.journaltitleJournal of Manufacturing Processeses
dc.publication.volumen50es
dc.publication.initialPage142es
dc.publication.endPage153es

FicherosTamañoFormatoVerDescripción
JofMP_ortiz_2020_development_p ...914.0KbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional