Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Tesis Doctoral
New methods and results in the optimisation of solar power tower plants
Autor/es | Ashley, Thomas Ian |
Director | Carrizosa Priego, Emilio José
Fernández Cara, Enrique |
Departamento | Universidad de Sevilla. Departamento de Estadística e Investigación Operativa |
Fecha de publicación | 2019-12-03 |
Fecha de depósito | 2020-01-09 |
Resumen | Renewable energy technology has seen great advances in recent decades,
combined with an ever increasing interest in the literature. Solar Power Tower
(SPT) plants are a form of Concentrating Solar Power (CSP) technology ... Renewable energy technology has seen great advances in recent decades, combined with an ever increasing interest in the literature. Solar Power Tower (SPT) plants are a form of Concentrating Solar Power (CSP) technology which continue to be developed around the world, and are formed of subsystems that are open to optimisation. This thesis is concerned with the development of new methods and results in the optimisation of SPT plants, with particular focus on operational optimi- sation. Chapter 1 provides background information on the energy sector, before describing the design and modelling of an SPT plant. Here, the optical theory behind the transfer of incident radiation in the system is developed and the relevant equations presented. In Chapter 2, the cleaning operations of the heliostat eld are optimised for a xed schedule length using Binary Integer Linear Programming (BILP). Problem dimensionality is addressed by a clustering algorithm, before an ini- tial solution is found for the allocation problem. Finally, a novel local search heuristic is presented that treats the so-called route \attractiveness" through the use of a sequential pair-wise optimisation procedure that minimises a weighted attractiveness measure whilst penalising for overall energy loss. Chapters 3-6 investigate the aiming strategy utilised by the heliostat eld when considering a desired ux distribution pro le and operational constraints. In Chapter 3, a BILP model was developed, where a pre-de ned set of aim- ing points on the receiver surface was chosen. The linear objective function was constrained with linear equalities that related to distribution smoothing (to pro- tect receiver components from abnormal ux loads) via the use of penalisation. Chapter 4 extended this model by instead considering continuous variables with no xed grid of aiming points. This led to an optimisation problem with a non- linear, non-convex objective function, with non-linear constraints. In this case, a gradient ascent algorithm was developed, utilising a non-standard step-size selection technique. Chapter 5 further extended the aiming point optimisation topic to consider the dynamic case. In this sense, the aiming strategy across a period of time could be optimised, taking into account SPT plant technologi- cal limitations. Two algorithms were considered, Penalisation and Augmented Lagrangian, where theoretical properties for optimality and solution existence were presented. Finally Chapter 6 considered the efects of inclement weather on the optimisation model presented in Chapter 3. Stochastic processes were in- vestigated to determine optimal aiming strategies at a xed point in time when weather data could not be known for certain. All research presented in this thesis is illustrated using real-world data for an SPT plant, and conclusions and recommendations for future work are presented. |
Cita | Ashley, T.I. (2019). New methods and results in the optimisation of solar power tower plants. (Tesis Doctoral Inédita). Universidad de Sevilla, Sevilla. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
thesis_TA_final.pdf | 7.592Mb | [PDF] | Ver/ | |