Show simple item record

Article

dc.creatorGonzález Díaz, Rocíoes
dc.creatorJiménez Rodríguez, María Josées
dc.creatorMedrano Garfia, Belénes
dc.date.accessioned2019-07-04T08:09:18Z
dc.date.available2019-07-04T08:09:18Z
dc.date.issued2017
dc.identifier.citationGonzález Díaz, R., Jiménez Rodríguez, M.J. y Medrano Garfia, B. (2017). Efficiently Storing Well-Composed Polyhedral Complexes Computed Over 3D Binary Images. Journal of Mathematical Imaging and Vision, 59 (1), 106-122.
dc.identifier.issn0924-9907es
dc.identifier.urihttps://hdl.handle.net/11441/87830
dc.description.abstractA 3D binary image I can be naturally represented by a combinatorial-algebraic structure called cubical complex and denoted by Q(I ), whose basic building blocks are vertices, edges, square faces and cubes. In Gonzalez-Diaz et al. (Discret Appl Math 183:59–77, 2015), we presented a method to “locally repair” Q(I ) to obtain a polyhedral complex P(I ) (whose basic building blocks are vertices, edges, specific polygons and polyhedra), homotopy equivalent to Q(I ), satisfying that its boundary surface is a 2D manifold. P(I ) is called a well-composed polyhedral complex over the picture I . Besides, we developed a new codification system for P(I ), encoding geometric information of the cells of P(I ) under the form of a 3D grayscale image, and the boundary face relations of the cells of P(I ) under the form of a set of structuring elements. In this paper, we build upon (Gonzalez-Diaz et al. 2015) and prove that, to retrieve topological and geometric information of P(I ), it is enough to store just one 3D point per polyhedron and hence neither grayscale image nor set of structuring elements are needed. From this “minimal” codification of P(I ), we finally present a method to compute the 2-cells in the boundary surface of P(I ).es
dc.description.sponsorshipMinisterio de Economía y Competitividad MTM2015-67072-Pes
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.relation.ispartofJournal of Mathematical Imaging and Vision, 59 (1), 106-122.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject3D binary imagees
dc.subjectWell composednesses
dc.subjectCubical complexes
dc.subjectWell-composed polyhedral complexes
dc.titleEfficiently Storing Well-Composed Polyhedral Complexes Computed Over 3D Binary Imageses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/submittedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Matemática Aplicada I (ETSII)es
dc.relation.projectIDMTM2015-67072-Pes
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s10851-017-0722-8es
dc.identifier.doi10.1007/s10851-017-0722-8es
idus.format.extent17es
dc.journaltitleJournal of Mathematical Imaging and Visiones
dc.publication.volumen59es
dc.publication.issue1es
dc.publication.initialPage106es
dc.publication.endPage122es
dc.identifier.sisius21259865es

FilesSizeFormatViewDescription
Efficiently Storing Well-Composed ...4.751MbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional