Mostrar el registro sencillo del ítem

Artículo

dc.creatorWang, Taoes
dc.creatorWei, Xiaoguanges
dc.creatorHuang, Taoes
dc.creatorWang, Junes
dc.creatorValencia Cabrera, Luises
dc.creatorFan, Zhennanes
dc.creatorPérez Jiménez, Mario de Jesúses
dc.date.accessioned2019-05-30T07:54:12Z
dc.date.available2019-05-30T07:54:12Z
dc.date.issued2019
dc.identifier.citationWang, T., Wei, X., Huang, T., Wang, J., Valencia Cabrera, L., Fan, Z. y Pérez Jiménez, M.d.J. (2019). Cascading Failures Analysis Considering Extreme Virus Propagation of Cyber-Physical Systems in Smart Grids. Complexity, 2019 (Article ID 7428458)
dc.identifier.issn1076-2787es
dc.identifier.urihttps://hdl.handle.net/11441/86995
dc.description.abstractCommunication networks as smart infrastructure systems play an important role in smart girds to monitor, control, and manage the operation of electrical networks. However, due to the interdependencies between communication networks and electrical networks, once communication networks fail (or are attacked), the faults can be easily propagated to electrical networks which even lead to cascading blackout; therefore it is crucial to investigate the impacts of failures of communication networks on the operation of electrical networks. This paper focuses on cascading failures in interdependent systems fromthe perspective of cyberphysical security. In the interdependent fault propagation model, the complex network-based virus propagation model is used to describe virus infection in the scale-free and small-world topologically structured communication networks. Meanwhile, in the electrical network, dynamic power flow is employed to reproduce the behaviors of the electrical networks after a fault. In addition, two time windows, i.e., the virus infection cycle and the tripping time of overloaded branches, are considered to analyze the fault characteristics of both electrical branches and communication nodes along time under virus propagation.The proposed model is applied to the IEEE 118-bus system and the French grid coupled with different communication network structures. The results show that the scale-free communication network is more vulnerable to virus propagation in smart cyber-physical grids.es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherHindawies
dc.relation.ispartofComplexity, 2019 (Article ID 7428458)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleCascading Failures Analysis Considering Extreme Virus Propagation of Cyber-Physical Systems in Smart Gridses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ciencias de la Computación e Inteligencia Artificiales
dc.relation.publisherversionhttps://www.hindawi.com/journals/complexity/2019/7428458/es
dc.identifier.doi10.1155/2019/7428458es
dc.contributor.groupUniversidad de Sevilla. TIC193: Computación Naturales
idus.format.extent16es
dc.journaltitleComplexityes
dc.publication.volumen2019es
dc.publication.issueArticle ID 7428458es

FicherosTamañoFormatoVerDescripción
Cascading Failures Analysis.pdf2.983MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional