Show simple item record

Article

dc.creatorMontero Chacón, Francisco de Paulaes
dc.creatorSanz Herrera, José Antonioes
dc.creatorDoblaré, M.es
dc.date.accessioned2019-04-16T11:34:03Z
dc.date.available2019-04-16T11:34:03Z
dc.date.issued2019-02-26
dc.identifier.citationMontero Chacón, F.d.P., Sanz Herrera, J.A. y Doblaré, M. (2019). Computational Multiscale Solvers for Continuum Approaches. Materials, 12 (5), 691-1-691-46.
dc.identifier.issn1996-1944es
dc.identifier.urihttps://hdl.handle.net/11441/85730
dc.description.abstractComputational multiscale analyses are currently ubiquitous in science and technology. Different problems of interest-e.g., mechanical, fluid, thermal, or electromagnetic-involving a domain with two or more clearly distinguished spatial or temporal scales, are candidates to be solved by using this technique. Moreover, the predictable capability and potential of multiscale analysis may result in an interesting tool for the development of new concept materials, with desired macroscopic or apparent properties through the design of their microstructure, which is now even more possible with the combination of nanotechnology and additive manufacturing. Indeed, the information in terms of field variables at a finer scale is available by solving its associated localization problem. In this work, a review on the algorithmic treatment of multiscale analyses of several problems with a technological interest is presented. The paper collects both classical and modern techniques of multiscale simulation such as those based on the proper generalized decomposition (PGD) approach. Moreover, an overview of available software for the implementation of such numerical schemes is also carried out. The availability and usefulness of this technique in the design of complex microstructural systems are highlighted along the text. In this review, the fine, and hence the coarse scale, are associated with continuum variables so atomistic approaches and coarse-graining transfer techniques are out of the scope of this paper.es
dc.description.sponsorshipAbengoa Researches
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.relation.ispartofMaterials, 12 (5), 691-1-691-46.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMultiscale analysises
dc.subjectHomogenizationes
dc.subjectProper generalized decompositiones
dc.subjectComputational simulationes
dc.titleComputational Multiscale Solvers for Continuum Approacheses
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.relation.publisherversionhttps://doi.org/10.3390/ma12050691es
dc.identifier.doi10.3390/ma12050691es
idus.format.extent46 p.es
dc.journaltitleMaterialses
dc.publication.volumen12es
dc.publication.issue5es
dc.publication.initialPage691-1es
dc.publication.endPage691-46es

FilesSizeFormatViewDescription
Computational multiscale solve ...11.68MbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional