Article
Cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile in arabidopsis
Author/s | Álvarez Núñez, Consolación
García Fernández, Irene Moreno, Inmaculada Pérez Pérez, Maria Esther Crespo González, José Luis Romero González, Luis Carlos Gotor Martínez, Cecilia |
Department | Universidad de Sevilla. Departamento de Bioquímica Vegetal y Biología Molecular |
Publication Date | 2012 |
Deposit Date | 2019-03-20 |
Published in |
|
Abstract | In Arabidopsis thaliana, DES1 is the only identified l-Cysteine desulfhydrase located in the cytosol, and it is involved in the degradation of cysteine and the concomitant production of H2S in this cell compartment. Detailed ... In Arabidopsis thaliana, DES1 is the only identified l-Cysteine desulfhydrase located in the cytosol, and it is involved in the degradation of cysteine and the concomitant production of H2S in this cell compartment. Detailed characterization of the T-DNA insertion mutants des1-1 and des1-2 has provided insight into the role of sulfide metabolically generated in the cytosol as a signaling molecule. Mutations of L-CYS DESULFHYDRASE 1 (DES1) impede H2S generation in the Arabidopsis cytosol and strongly affect plant metabolism. Senescence-associated vacuoles are detected in mesophyll protoplasts of des1 mutants. Additionally, DES1 deficiency promotes the accumulation and lipidation of the ATG8 protein, which is associated with the process of autophagy. The transcriptional profile of the des1-1 mutant corresponds to its premature senescence and autophagy-induction phenotypes, and restoring H2S generation has been shown to eliminate the phenotypic defects of des1 mutants. Moreover, sulfide is able to reverse ATG8 accumulation and lipidation, even in wild-type plants when autophagy is induced by carbon starvation, suggesting a general effect of sulfide on autophagy regulation that is unrelated to sulfur or nitrogen limitation stress. Our results suggest that cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile of Arabidopsis. |
Project ID. | BIO2010-15201
BFU2009-07368 BIO-273 |
Citation | Álvarez Núñez, C., García Fernández, I., Moreno, I., Pérez Pérez, M.E., Crespo González, J.L., Romero González, L.C. y Gotor Martínez, C. (2012). Cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile in arabidopsis. Plant Cell, 24, 4621-4634. |
Files | Size | Format | View | Description |
---|---|---|---|---|
Cysteine-Generated.docx | 367.1Kb | [Microsoft Word 2007] | View/ | |