### Article

##
Komlós' Theorem and the Fixed Point Property for affine mappings

Author | Domínguez Benavides, Tomás
Japón Pineda, María de los Ángeles |

Department | Universidad de Sevilla. Departamento de Análisis Matemático |

Date | 2018-12 |

Published in | Proceedings of the American Mathematical Society, 146 (12), 5311-5322. |

Abstract | Assume that X is a Banach space of measurable functions for which Koml´os’ Theorem holds. We associate to any closed convex bounded subset C of X a coefficient t(C) which attains its minimum value when C is closed for the ... Assume that X is a Banach space of measurable functions for which Koml´os’ Theorem holds. We associate to any closed convex bounded subset C of X a coefficient t(C) which attains its minimum value when C is closed for the topology of convergence in measure and we prove some fixed point results for affine Lipschitzian mappings, depending on the value of t(C) ∈ [1, 2] and the value of the Lipschitz constants of the iterates. As a first consequence, for every L < 2, we deduce the existence of fixed points for affine uniformly L-Lipschitzian mappings defined on the closed unit ball of L1[0, 1]. Our main theorem also provides a wide collection of convex closed bounded sets in L 1([0, 1]) and in some other spaces of functions, which satisfy the fixed point property for affine nonexpansive mappings. Furthermore, this property is still preserved by equivalent renormings when the Banach-Mazur distance is small enough. In particular, we prove that the failure of the fixed point property for affine nonexpansive mappings in L1(µ) can only occur in the extremal case t(C) = 2. Examples are displayed proving that our fixed point theorem is optimal in terms of the Lipschitz constants and the coefficient t(C). |

Citation | Domínguez Benavides, T. y Japón Pineda, M.d.l.Á. (2018). Komlós' Theorem and the Fixed Point Property for affine mappings. Proceedings of the American Mathematical Society, 146 (12), 5311-5322. |

##### Impact

10.1090/proc/14201

Web of Science :
//WoS
var doi = document.getElementById("doi").innerHTML;
var url_wos = window.location.protocol + '//' + window.location.host + '/apps/wos/wos.php?doi=' + doi;
var xhttp_wos = new XMLHttpRequest();
xhttp_wos.onreadystatechange = function() {
if (xhttp_wos.status == 200) {
if (xhttp_wos.responseText !== '0') {
var info_wos = xhttp_wos.responseText.split("|");
if(xhttp_wos.responseText !== '') {
if (info_wos[1]!=0) {
$('#Citas-WoS-Link').attr('href',info_wos[0]);
$('#Citas-WoS .h4').html(info_wos[1]);
$('#Citas-WoS').removeClass('hidden');
}
}
}
}
};
xhttp_wos.open("GET", url_wos, true);
xhttp_wos.send();

:
//SCOPUS
var doi = document.getElementById("doi").innerHTML;
var url_scopus = window.location.protocol + '//' + window.location.host + '/apps/scopus/scopus.php?doi=' + doi;
var xhttp_scopus = new XMLHttpRequest();
xhttp_scopus.onreadystatechange = function() {
if (xhttp_scopus.status == 200) {
if (xhttp_scopus.responseText !== '0') {
var info_scopus = xhttp_scopus.responseText.split("|");
if(xhttp_scopus.responseText !== '') {
if (info_scopus[1]!=0) {
$('#Citas-Scopus-Link').attr('href',info_scopus[0]);
$('#Citas-Scopus .h4').html(info_scopus[1]);
$('#Citas-Scopus').removeClass('hidden');
}
}
}
}
};
xhttp_scopus.open("GET", url_scopus, true);
xhttp_scopus.send();

##### Statistics

##### Share

##### Metadata

Show full item recordFiles | Size | Format | View | Description |
---|---|---|---|---|

Komlós' Theorem and the Fixed ... | 155.7Kb | [PDF] | View/ | |