Mostrar el registro sencillo del ítem

Artículo

dc.creatorGarcía Calvo, Agustínes
dc.creatorGuisado Lízar, José Luíses
dc.creatorDíaz del Río, Fernandoes
dc.creatorJiménez-Morales, Francisco de Paulaes
dc.creatorCórdoba Zurita, Antonioes
dc.date.accessioned2018-04-24T11:31:38Z
dc.date.available2018-04-24T11:31:38Z
dc.date.issued2018
dc.identifier.citationGarcía Calvo, A., Guisado Lízar, J.L., Díaz del Río, F., Jiménez Morales, F. y Córdoba Zurita, A. (2018). Graphics Processing Unit–Enhanced Genetic Algorithms for Solving the Temporal Dynamics of Gene Regulatory Networks. Evolutionary Bioinformatics, 14, 1-16.
dc.identifier.issn1176-9343es
dc.identifier.urihttps://hdl.handle.net/11441/73466
dc.description.abstractUnderstanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes—master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)—is carried out for this problem. Several procedures that optimize the use of the GPU’s resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent sequential single-core implementation running on a recent Intel i7 CPU. This work can provide useful guidance to researchers in biology, medicine, or bioinformatics in how to take advantage of the parallelization on massively parallel devices and GPUs to apply novel metaheuristic algorithms powered by nature for real-world applications (like the method to solve the temporal dynamics of GRNs).es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherLibertas Academicaes
dc.relation.ispartofEvolutionary Bioinformatics, 14, 1-16.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectGene regulatory networkses
dc.subjectevolutionary computinges
dc.subjectparallel genetic algorithmses
dc.subjectGPUes
dc.titleGraphics Processing Unit–Enhanced Genetic Algorithms for Solving the Temporal Dynamics of Gene Regulatory Networkses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Física de la Materia Condensadaes
dc.relation.publisherversionhttp://dx.doi.org/ 10.1177/1176934318767889es
dc.identifier.doi10.1177/1176934318767889es
idus.format.extent16 p.es
dc.journaltitleEvolutionary Bioinformaticses
dc.publication.volumen14es
dc.publication.initialPage1es
dc.publication.endPage16es

FicherosTamañoFormatoVerDescripción
pubmed10.1177_1176934318767889.pdf1.779MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional