Show simple item record

Article

dc.creatorFlores Díaz, Ramón Jesúses
dc.creatorMolina Ferragut, Elisendaes
dc.creatorTejada Cazorla, Juan Antonioes
dc.date.accessioned2018-04-10T06:39:39Z
dc.date.available2018-04-10T06:39:39Z
dc.date.issued2014-06
dc.identifier.citationFlores Díaz, R.J., Molina Ferragut, E. y Tejada Cazorla, J.A. (2014). Pyramidal values. Annals of Operations Research, 217 (1), 233-252.
dc.identifier.issn0254-5330es
dc.identifier.issn1572-9338es
dc.identifier.urihttps://hdl.handle.net/11441/72240
dc.description.abstractWe propose and analyze a new type of values for cooperative TU-games, which we call pyramidal values. Assuming that the grand coalition is sequentially formed, and all orderings are equally likely, we define a pyramidal value to be any expected payoff in which the entrant player receives a salary, and the rest of his marginal contribution to the just formed coalition is distributed among the incumbent players. We relate the pyramidal-type sharing scheme we propose with other sharing schemes, and we also obtain some known values by means of this kind of pyramidal procedures. In particular, we show that the Shapley value can be obtained by means of an interesting pyramidal procedure that distributes nonzero dividends among the incumbents. As a result, we obtain an alternative formulation of the Shapley value based on a measure of complementarity between two players. Finally, we introduce the family of proportional pyramidal values, in which an incumbent receives a dividend in proportion to his initial investment, measured by means of his marginal contribution.es
dc.description.sponsorshipMinisterio de Ciencia e Innovaciónes
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.relation.ispartofAnnals of Operations Research, 217 (1), 233-252.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectGame theoryes
dc.subjectTU gameses
dc.subjectPyramidal valueses
dc.subjectProcedural valueses
dc.subjectShapley valuees
dc.subjectCo-valueses
dc.subjectConsensus valueses
dc.subjectEgalitarian Shapley valueses
dc.titlePyramidal valueses
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Geometría y Topologíaes
dc.relation.projectIDMTM2011-27892es
dc.relation.publisherversionhttps://link.springer.com/content/pdf/10.1007%2Fs10479-013-1509-y.pdfes
dc.identifier.doi10.1007/s10479-013-1509-yes
dc.contributor.groupUniversidad de Sevilla. FQM218: Singularidades, Geometría Algebraica Aritmética, Grupos y Homotopíaes
idus.format.extent22 p.es
dc.journaltitleAnnals of Operations Researches
dc.publication.volumen217es
dc.publication.issue1es
dc.publication.initialPage233es
dc.publication.endPage252es
dc.contributor.funderMinisterio de Ciencia e Innovación (MICIN). España

FilesSizeFormatViewDescription
Pyramidal values.pdf208.2KbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional