Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Artículo
Counting and enumerating feasible rotating schedules by means of Gröbner bases
Autor/es | Falcón Ganfornina, Raúl Manuel
Barrena Algara, Eva Canca Ortiz, José David Laporte, Gilbert |
Departamento | Universidad de Sevilla. Departamento de Matemática Aplicada I Universidad de Sevilla. Departamento de Organización Industrial y Gestión de Empresas I |
Fecha de publicación | 2016 |
Fecha de depósito | 2017-12-20 |
Publicado en |
|
Resumen | This paper deals with the problem of designing and analyzing rotating schedules with an algebraic computational approach. Specifically, we determine a set of Boolean polynomials whose zeros can be uniquely identified with ... This paper deals with the problem of designing and analyzing rotating schedules with an algebraic computational approach. Specifically, we determine a set of Boolean polynomials whose zeros can be uniquely identified with the set of rotating schedules related to a given workload matrix subject to standard constraints. These polynomials constitute zero-dimensional radical ideals, whose reduced Gröbner bases can be computed to count and even enumerate the set of rotating schedules that satisfy the desired set of constraints. Thereby, it enables to analyze the influence of each constraint in the same. |
Agencias financiadoras | Junta de Andalucía |
Identificador del proyecto | P09-TEP-5022 |
Cita | Falcón Ganfornina, R.M., Barrena Algara, E., Canca Ortiz, J.D. y Laporte, G. (2016). Counting and enumerating feasible rotating schedules by means of Gröbner bases. Mathematics and Computers in Simulation, 125, 139-151. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
MATCOM-D-14-00043.pdf | 172.7Kb | [PDF] | Ver/ | |