Final Degree Project
Detección de arritmias mediante parámetros de calidad de señal y estadísticos
Author/s | Alonso Cabrera, Carlos Alberto |
Director | Payán Somet, Francisco Javier
![]() ![]() ![]() ![]() ![]() |
Department | Universidad de Sevilla. Departamento de Teoría de la Señal y Comunicaciones |
Date | 2017 |
Academic Title | Universidad de Sevilla. Grado en Ingeniería de las Tecnologías de Telecomunicación |
Abstract | Dentro de las unidades de cuidados intensivos se producen multitud de falsas alarmas asociadas a una mala
medición de las distintas arritmias cardiacas, ya sea por un factor interno o externo.
El objeto del algoritmo ... Dentro de las unidades de cuidados intensivos se producen multitud de falsas alarmas asociadas a una mala medición de las distintas arritmias cardiacas, ya sea por un factor interno o externo. El objeto del algoritmo presentado en este documento es, dado un conjunto de archivos que generan alarma en la UCI de determinados hospitales, detectar si cada uno de ellos contiene una arritmia verdaderamente o se trata de una falsa arritmia generada por fallos en la medición, lo cual provoca una falsa alarma. En el caso de la arritmia del tipo fibrilación auricular el único objetivo es detectar las arritmias de dicho tipo contenidas en los ficheros de entrada. El algoritmo se basa en la extracción de características de las distintas señales fisiológicas contenidas en los ficheros de entrada y el uso de 3 tipos de clasificadores (uno por cada arritmia; bradicardia, taquicardia, taquicardia ventricular ) hallados mediante machine learning (Random Forest), para la toma de decisión entre alarma detectada o falsa alarma, y el uso de estadísticos (fibrilación auricular). En el primer caso se desarrolla una clasificación binaria entre arritmia detectada o falsa alarma, para un determinado archivo de entrada, combinando parámetros de calidad de señal y características fisiológicas obtenidas de distintas señales biomédicas, como electrocardiograma (ECG), fotopletismografía (PPG) y señal de presión arterial(ABP) mediante un método predictivo. Los clasificadores Random Forest para cada arritmia son entrenados teniendo en cuenta esta serie de características en un gran conjunto de datos. El rango de detección de señales correspondiente con un episodio de arritmia es de un 75-99%(dependiendo de cada tipo de arritmia) y la detección de señales que correspondientes con una falsa alarma oscila entre 74-94%. Los mejores resultados se corresponden con taquicardia y los ratios mas pobres de detección se dan para taquicardia ventricular. En el segundo caso la detección se lleva a cabo aplicando estadísticos a intervalos RR de señales ECG. Estos estadísticos tienen en cuenta la irregularidad de los intervalos RR cuando existe fibrilación auricular. La detección esta basada en RMSSD (Root Mean Square of Successive Differences), TPR (Turning Point Ratio) y H (Entropía de Shannon). Con este método el 81,25 % de las arritmias son detectadas. |
Files | Size | Format | View | Description |
---|---|---|---|---|
Carlos Alberto Alonso Cabrera.pdf | 20.50Mb | ![]() | View/ | |