Show simple item record

Article

dc.creatorBriane, Marces
dc.creatorCasado Díaz, Juanes
dc.creatorLuna Laynez, Manueles
dc.creatorPallares Martín, Antonio Jesúses
dc.date.accessioned2017-07-12T08:11:55Z
dc.date.available2017-07-12T08:11:55Z
dc.date.issued2017-03
dc.identifier.citationBriane, M., Casado Díaz, J., Luna Laynez, M. y Pallares Martín, A.J. (2017). Γ-convergence of equi-coercive nonlinear energies defined on vector-valued functions, with non-uniformly bounded coefficients. Nonlinear Analysis: Theory, Methods & Applications, 151, 187-207.
dc.identifier.issn0362-546Xes
dc.identifier.urihttp://hdl.handle.net/11441/62394
dc.description.abstractThe present paper deals with the asymptotic behavior of equi-coercive sequences {Fn} of nonlinear functionals defined over vector-valued functions in W1,p 0 (Ω)M , where p > 1, M ≥ 1, and Ω is a bounded open set of RN , N ≥ 2. The strongly local energy density Fn(·, Du) of the functional Fn satisfies a Lipschitz condition with respect to the second variable, which is controlled by a positive sequence {an} which is only bounded in some suitable space L r(Ω). We prove that the sequence {Fn} Γ-converges for the strong topology of Lp(Ω)M to a functional F which has a strongly local density F(·, Du) for sufficiently regular functions u. This compactness result extends former results on the topic, which are based either on maximum principle arguments in the nonlinear scalar case, or adapted div-curl lemmas in the linear case. Here, the vectorial character and the nonlinearity of the problem need a new approach based on a careful analysis of the asymptotic minimizers associated with the functional Fn. The relevance of the conditions which are imposed to the energy density Fn(·, Du), is illustrated by several examples including some classical hyper-elastic energies.es
dc.description.sponsorshipMinisterio de Economía y Competitividades
dc.description.sponsorshipInstitut de Recherche Mathématique de Renneses
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofNonlinear Analysis: Theory, Methods & Applications, 151, 187-207.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectΓ-convergencees
dc.subjectNonlinear elliptic systemses
dc.subjectNon-uniformly bounded coefficientses
dc.subjectHyperelasticityes
dc.titleΓ-convergence of equi-coercive nonlinear energies defined on vector-valued functions, with non-uniformly bounded coefficientses
dc.title.alternativeGamma-convergence of equi-coercive nonlinear energies defined on vector-valued functions, with non-uniformly bounded coefficientses
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/submittedVersiones
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numéricoes
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO/MTM2011-24457es
dc.relation.publisherversionhttp://ac.els-cdn.com/S0362546X16302899/1-s2.0-S0362546X16302899-main.pdf?_tid=e03fad62-66d5-11e7-8850-00000aacb35f&acdnat=1499845623_1fd704d628dd2fc57c204be3016b3656es
dc.identifier.doi10.1016/j.na.2016.11.009es
dc.contributor.groupUniversidad de Sevilla. FQM309: Control y Homogeneización de Ecuaciones en Derivadas Parcialeses
dc.journaltitleNonlinear Analysis: Theory, Methods & Applicationses
dc.publication.volumen151es
dc.publication.initialPage187es
dc.publication.endPage207es
dc.contributor.funderMinisterio de Economía y Competitividad (MINECO). España
dc.contributor.funderInstitut de Recherche Mathématique de Rennes

FilesSizeFormatViewDescription
Γ-convergence of equi-coercive ...718.8KbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional