Show simple item record

Article

dc.creatorBadia, Santiagoes
dc.creatorCodina, Ramónes
dc.creatorGutiérrez Santacreu, Juan Vicentees
dc.date.accessioned2017-04-05T09:43:38Z
dc.date.available2017-04-05T09:43:38Z
dc.date.issued2010
dc.identifier.citationBadia, S., Codina, R. y Gutiérrez Santacreu, J.V. (2010). Long-Term Stability Estimates and Existence of a Global Attractor in a Finite Element Approximation of the Navier–Stokes Equations with Numerical Subgrid Scale Modeling. SIAM Journal on Numerical Analysis, 48 (3), 1013-1037.
dc.identifier.issn0036-1429es
dc.identifier.urihttp://hdl.handle.net/11441/57151
dc.description.abstractVariational multiscale methods lead to stable finite element approximations of the Navier–Stokes equations, dealing with both the indefinite nature of the system (pressure stability) and the velocity stability loss for high Reynolds numbers. These methods enrich the Galerkin formulation with a subgrid component that is modeled. In fact, the effect of the subgrid scale on the captured scales has been proved to dissipate the proper amount of energy needed to approximate the correct energy spectrum. Thus, they also act as effective large-eddy simulation turbulence models and allow one to compute flows without the need to capture all the scales in the system. In this article, we consider a dynamic subgrid model that enforces the subgrid component to be orthogonal to the finite element space in the L2 sense. We analyze the long-term behavior of the algorithm, proving the existence of appropriate absorbing sets and a compact global attractor. The improvements with respect to a finite element Galerkin approximation are the long-term estimates for the subgrid component, which are translated to effective pressure and velocity stability. Thus, the stabilization introduced by the subgrid model into the finite element problem does not deteriorate for infinite time intervals of computation.es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherSIAMes
dc.relation.ispartofSIAM Journal on Numerical Analysis, 48 (3), 1013-1037.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectNavier–Stokes problemes
dc.subjectlong-term stabilityes
dc.subjectabsorbing setes
dc.subjectglobal attractores
dc.subjectstabilized finite element methodses
dc.subjectsubgrid scaleses
dc.titleLong-Term Stability Estimates and Existence of a Global Attractor in a Finite Element Approximation of the Navier–Stokes Equations with Numerical Subgrid Scale Modelinges
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Matemática Aplicada I (ETSII)es
dc.relation.publisherversionhttp://epubs.siam.org/doi/abs/10.1137/090766681es
dc.identifier.doi10.1137/090766681es
idus.format.extent25es
dc.journaltitleSIAM Journal on Numerical Analysises
dc.publication.volumen48es
dc.publication.issue3es
dc.publication.initialPage1013es
dc.publication.endPage1037es

FilesSizeFormatViewDescription
090766681.pdf294.9KbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional