Show simple item record

Presentation

dc.creatorNidhi Sharma, Pratyushes
dc.creatorShmueli, Galites
dc.creatorSarstedt, Markoes
dc.creatorKim, Kevin H.es
dc.date.accessioned2017-03-07T19:27:53Z
dc.date.available2017-03-07T19:27:53Z
dc.date.issued2015
dc.identifier.citationNidhi Sharma, P., Shmueli, G., Sarstedt, M. y Kim, K.H. (2015). Predictive model selection in partial least squares path modeling (PLS-PM). En 2nd International Symposium on Partial Least Squares Path Modeling - The Conference for PLS Users (1-6), Sevilla: University of Twente.
dc.identifier.isbn9789036540568es
dc.identifier.urihttp://hdl.handle.net/11441/55513
dc.description.abstractPredictive model selection metrics are used to select models with the highest out-of-sample predictive power among a set of models. R2 and related metrics, which are heavily used in partial least squares path modeling, are often mistaken as predictive metrics. We introduce information theoretic model selection criteria that are designed for out-of-sample prediction and which do not require creating a holdout sample. Using a Monte Carlo study, we compare the performance of frequently used model evaluation criteria and information theoretic criteria in selecting the best predictive model under various conditions of sample size, effect size, loading patterns, and data distribution.es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherUniversity of Twentees
dc.relation.ispartof2nd International Symposium on Partial Least Squares Path Modeling - The Conference for PLS Users (2015), pp. 1-6.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPartial Least Squares Path Modeling (PLS-PM)es
dc.subjectStructural Equation Modeling (SEM)es
dc.subjectOut-of-Sample Predictiones
dc.titlePredictive model selection in partial least squares path modeling (PLS-PM)es
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.identifier.doi10.3990/2.336es
idus.format.extent6es
dc.publication.initialPage1es
dc.publication.endPage6es
dc.eventtitle2nd International Symposium on Partial Least Squares Path Modeling - The Conference for PLS Userses
dc.eventinstitutionSevillaes
dc.relation.publicationplaceEnschedees

FilesSizeFormatViewDescription
Predictive model selection.pdf280.8KbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional