Mostrar el registro sencillo del ítem

Artículo

dc.creatorBravo-Rodríguez, Juan Carloses
dc.creatorCastilla Roldán, Manuel-Viggoes
dc.date.accessioned2016-11-15T12:16:36Z
dc.date.available2016-11-15T12:16:36Z
dc.date.issued2016
dc.identifier.citationBravo-Rodríguez, J.C. y Castilla Roldán, M.(2016). Energy conservation law in industrial architecture: an approach through geometric algebra. Symmetry, 8 (92), 1-13.
dc.identifier.issnEISSN 2073-8994es
dc.identifier.urihttp://hdl.handle.net/11441/48630
dc.descriptionThis article belongs to the Special Issue Symmetry in Systems Design and Analysises
dc.description.abstractSince 1892, the electrical engineering scientific community has been seeking a power theory for interpreting the power flow within electric networks under non-sinusoidal conditions. Although many power theories have been proposed regarding non-sinusoidal operation, an adequate solution is yet to be found. Using the framework based on complex algebra in non-sinusoidal circuit analysis (frequency domain), the verification of the energy conservation law is only possible in sinusoidal situations. In this case, reactive energy turns out to be proportional to the energy difference between the average electric and magnetic energies stored in the loads and its cancellation is mathematically trivial. However, in industrial architecture, apparent power definition of electric loads (non-sinusoidal conditions) is inconsistent with the energy conservation law. Up until now, in the classical complex algebra approach, this goal is only valid in the case of purely resistive loads. Thus, in this paper, a new circuit analysis approach using geometric algebra is used to develop the most general proof of energy conservation in industrial building loads. In terms of geometric objects, this powerful tool calculates the voltage, current, and apparent power in electrical systems in non-sinusoidal, linear/nonlinear situations. In contrast to the traditional method developed by Steinmetz, the suggested powerful tool extends the concept of phasor to multivector-phasors and is performed in a new Generalized Complex Geometric Algebra structure (CGn), where Gn is the Clifford algebra in n-dimensional real space and C is the complex vector space. To conclude, a numerical example illustrates the clear advantages of the approach suggested in this paper.es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.relation.ispartofSymmetry, 8 (92), 1-13.es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEnergy conservation lawes
dc.subjectBuilding loadses
dc.subjectHarmonicses
dc.titleEnergy conservation law in industrial architecture: an approach through geometric algebraes
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ingeniería del Diseñoes
dc.relation.projectIDRNM162es
dc.relation.publisherversionhttp://www.mdpi.com/2073-8994/8/9/92es
dc.identifier.doi10.3390/sym8090092es
dc.contributor.groupUniversidad de Sevilla. RNM162: Composición, Arquitectura y Medio Ambientees
idus.format.extent14 p.es
dc.journaltitleSymmetryes
dc.publication.volumen8es
dc.publication.issue92es
dc.publication.initialPage1es
dc.publication.endPage13es
dc.identifier.idushttps://idus.us.es/xmlui/handle/11441/48630

FicherosTamañoFormatoVerDescripción
S_Castilla_2016_energy.pdf2.723MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional