Show simple item record

Article

dc.creatorFernández Cara, Enriquees
dc.creatorMünch, Arnaudes
dc.date.accessioned2016-07-07T07:30:54Z
dc.date.available2016-07-07T07:30:54Z
dc.date.issued2012-09
dc.identifier.citationFernández Cara, E. y Münch, A. (2012). Numerical null controllability of semi-linear 1-D heat equations: fixed point, least squares and Newton methods. Mathematical Control and Related Fields, 2 (3), 217-246.
dc.identifier.issn2156-8472es
dc.identifier.issn2156-8499es
dc.identifier.urihttp://hdl.handle.net/11441/43263
dc.description.abstractThis paper deals with the numerical computation of distributed null controls for semilinear 1D heat equations, in the sublinear and slightly superlinear cases. Under sharp growth assumptions, the existence of controls has been obtained in [Fernandez-Cara & Zuazua, Null and approximate controllability for weakly blowing up semi-linear heat equation, 2000] via a fixed point reformulation; see also [Barbu, Exact controllability of the superlinear heat equation, 2000]. More precisely, Carleman estimates and Kakutani’s Theorem together ensure the existence of solutions to fixed points for an equivalent fixed point reformulated problem. A nontrivial difficulty appears when we want to extract from the associated Picard iterates a convergent (sub)sequence. In this paper, we introduce and analyze a least squares reformulation of the problem; we show that this strategy leads to an effective and constructive way to compute fixed points. We also formulate and apply a Newton-Raphson algorithm in this context. Several numerical experiments that make it possible to test and compare these methods are performed.es
dc.description.sponsorshipDirección General de Investigaciónes
dc.description.sponsorshipAgence Nationale de la Recherchees
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherAmerican Institute of Mathematical Scienceses
dc.relation.ispartofMathematical Control and Related Fields, 2 (3), 217-246.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectOne-dimensional semi-linear heat equationes
dc.subjectNull controllabilityes
dc.subjectBlow upes
dc.subjectNumerical solutiones
dc.subjectLeast squares methodes
dc.titleNumerical null controllability of semi-linear 1-D heat equations: fixed point, least squares and Newton methodses
dc.typeinfo:eu-repo/semantics/articlees
dc.type.versioninfo:eu-repo/semantics/submittedVersiones
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numéricoes
dc.relation.projectIDMTM2006-07932es
dc.relation.projectIDMTM2010-15592es
dc.relation.projectIDANR-07-JC-183284es
dc.relation.publisherversionhttp://dx.doi.org/10.3934/mcrf.2012.2.217es
dc.identifier.doi10.3934/mcrf.2012.2.217es
dc.contributor.groupUniversidad de Sevilla. FQM131: Ec.diferenciales,Simulacion Num.y Desarrollo Softwarees
idus.format.extent29 p.es
dc.journaltitleMathematical Control and Related Fieldses
dc.publication.volumen2es
dc.publication.issue3es
dc.publication.initialPage217es
dc.publication.endPage246es
dc.identifier.idushttps://idus.us.es/xmlui/handle/11441/43263
dc.contributor.funderDirección General de Enseñanza Superior. España
dc.contributor.funderAgence Nationale de la Recherche. France

FilesSizeFormatViewDescription
Numerical null controllability ...204.7KbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional