Article
Random dynamical systems for stochastic evolution equations driven by multiplicative fractional Brownian noise with Hurst parameters H∈(1/3,1/2]
Author/s | Garrido Atienza, María José
Lu, Kening Schmalfuss, Björn |
Department | Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico |
Date | 2016 |
Published in |
|
Abstract | We consider the stochastic evolution equation du = Audt + G(u)dω, u(0) = u0 in a separable Hilbert space V . Here G is supposed to be three times Fr´echet-differentiable and ω is a trace class fractional Brownian motion ... We consider the stochastic evolution equation du = Audt + G(u)dω, u(0) = u0 in a separable Hilbert space V . Here G is supposed to be three times Fr´echet-differentiable and ω is a trace class fractional Brownian motion with Hurst parameter H ∈ (1/3, 1/2]. We prove the existence of a unique pathwise global solution, and, since the considered stochastic integral does not produce exceptional sets, we are able to show that the above equation generates a random dynamical system. |
Funding agencies | European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER) National Science Foundation (NSF). United States |
Project ID. | MTM2011-22411
![]() NSF0909400 ![]() |
Citation | Garrido Atienza, M.J., Lu, K. y Schmalfuss, B. (2016). Random dynamical systems for stochastic evolution equations driven by multiplicative fractional Brownian noise with Hurst parameters H∈(1/3,1/2]. SIAM Journal on Applied Dynamical Systems, 15 (1), 625-654. |
Files | Size | Format | View | Description |
---|---|---|---|---|
Random dynamical systems for ... | 461.3Kb | ![]() | View/ | |