Show simple item record

Article

dc.creatorNarváez Macarro, Luises
dc.date.accessioned2016-06-29T11:51:38Z
dc.date.available2016-06-29T11:51:38Z
dc.date.issued2015-08-20
dc.identifier.citationNarváez Macarro, L. (2015). A duality approach to the symmetry of Bernstein-Sato polynomials of free divisors. Advances in Mathematics, 281, 1242-1273.
dc.identifier.issn0001-8708es
dc.identifier.issn1090-2082es
dc.identifier.urihttp://hdl.handle.net/11441/42931
dc.description.abstractIn this paper we prove that the Bernstein-Sato polynomial of any free divisor for which the D[s]-module D[s]h s admits a Spencer logarithmic resolution satisfies the symmetry property b(−s−2) = ±b(s). This applies in particular to locally quasi-homogeneous free divisors (for instance, to free hyperplane arrangements), or more generally, to free divisors of linear Jacobian type. We also prove that the Bernstein-Sato polynomial of an integrable logarithmic connection E and of its dual E ∗ with respect to a free divisor of linear Jacobian type are related by the equality bE(s) = ±bE∗ (−s − 2). Our results are based on the behaviour of the modules D[s]h s and D[s]E[s]h s under duality.es
dc.description.sponsorshipMinisterio de Ciencia e Innovaciónes
dc.description.sponsorshipFondo Europeo de Desarrollo Regionales
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.relation.ispartofAdvances in Mathematics, 281, 1242-1273.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBernstein-Sato polynomialses
dc.subjectFree divisorses
dc.subjectLogarithmic differential operatorses
dc.subjectSpencer resolutionses
dc.subjectLie-Rinehart algebrases
dc.subjectLogarithmic connectionses
dc.titleA duality approach to the symmetry of Bernstein-Sato polynomials of free divisorses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/submittedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.contributor.affiliationUniversidad de Sevilla. Departamento de álgebraes
dc.relation.projectIDMTM2010-19298es
dc.relation.projectIDP12-FQM-2696es
dc.relation.projectIDMTM2013-46231-Pes
dc.identifier.doihttp://dx.doi.org/10.1016/j.aim.2015.06.012es
dc.contributor.groupUniversidad de Sevilla. FQM218: Geometria Algebraica, Sistemas Diferenciales y Singularidadeses
idus.format.extent31 p.es
dc.journaltitleAdvances in Mathematicses
dc.publication.volumen281es
dc.publication.initialPage1242es
dc.publication.endPage1273es
dc.identifier.idushttps://idus.us.es/xmlui/handle/11441/42931
dc.contributor.funderMinisterio de Ciencia e Innovación (MICIN). España
dc.contributor.funderEuropean Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)

FilesSizeFormatViewDescription
A duality approach to the symmetry ...388.2KbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional