dc.creator | Narváez Macarro, Luis | es |
dc.date.accessioned | 2016-06-29T11:51:38Z | |
dc.date.available | 2016-06-29T11:51:38Z | |
dc.date.issued | 2015-08-20 | |
dc.identifier.citation | Narváez Macarro, L. (2015). A duality approach to the symmetry of Bernstein-Sato polynomials of free divisors. Advances in Mathematics, 281, 1242-1273. | |
dc.identifier.issn | 0001-8708 | es |
dc.identifier.issn | 1090-2082 | es |
dc.identifier.uri | http://hdl.handle.net/11441/42931 | |
dc.description.abstract | In this paper we prove that the Bernstein-Sato polynomial of any free
divisor for which the D[s]-module D[s]h
s
admits a Spencer logarithmic
resolution satisfies the symmetry property b(−s−2) = ±b(s). This applies
in particular to locally quasi-homogeneous free divisors (for instance, to
free hyperplane arrangements), or more generally, to free divisors of linear
Jacobian type. We also prove that the Bernstein-Sato polynomial of an
integrable logarithmic connection E and of its dual E
∗ with respect to a
free divisor of linear Jacobian type are related by the equality bE(s) =
±bE∗ (−s − 2). Our results are based on the behaviour of the modules
D[s]h
s
and D[s]E[s]h
s
under duality. | es |
dc.description.sponsorship | Ministerio de Ciencia e Innovación | es |
dc.description.sponsorship | Fondo Europeo de Desarrollo Regional | es |
dc.format | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.relation.ispartof | Advances in Mathematics, 281, 1242-1273. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Bernstein-Sato polynomials | es |
dc.subject | Free divisors | es |
dc.subject | Logarithmic differential operators | es |
dc.subject | Spencer resolutions | es |
dc.subject | Lie-Rinehart algebras | es |
dc.subject | Logarithmic connections | es |
dc.title | A duality approach to the symmetry of Bernstein-Sato polynomials of free divisors | es |
dc.type | info:eu-repo/semantics/article | es |
dcterms.identifier | https://ror.org/03yxnpp24 | |
dc.type.version | info:eu-repo/semantics/submittedVersion | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.contributor.affiliation | Universidad de Sevilla. Departamento de álgebra | es |
dc.relation.projectID | MTM2010-19298 | es |
dc.relation.projectID | P12-FQM-2696 | es |
dc.relation.projectID | MTM2013-46231-P | es |
dc.identifier.doi | http://dx.doi.org/10.1016/j.aim.2015.06.012 | es |
dc.contributor.group | Universidad de Sevilla. FQM218: Geometria Algebraica, Sistemas Diferenciales y Singularidades | es |
idus.format.extent | 31 p. | es |
dc.journaltitle | Advances in Mathematics | es |
dc.publication.volumen | 281 | es |
dc.publication.initialPage | 1242 | es |
dc.publication.endPage | 1273 | es |
dc.identifier.idus | https://idus.us.es/xmlui/handle/11441/42931 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación (MICIN). España | |
dc.contributor.funder | European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER) | |