Show simple item record


dc.creatorGatica Pérez, Gabriel Nibaldoes
dc.creatorRuiz Baier, Ricardoes
dc.creatorTierra Chica, Giordanoes
dc.identifier.citationGatica Pérez, G.N., Ruiz Baier, R. y Tierra Chica, G. (2016). A mixed finite element method for Darcy’s equations with pressure dependent porosity. Mathematics of Computation, 85, 1-33.
dc.description.abstractIn this work we develop the a priori and a posteriori error analyses of a mixed finite element method for Darcy’s equations with porosity depending exponentially on the pressure. A simple change of variable for this unknown allows to transform the original nonlinear problem into a linear one whose dual-mixed variational formulation falls into the frameworks of the generalized linear saddle point problems and the fixed point equations satisfied by an affine mapping. According to the latter, we are able to show the well-posedness of both the continuous and discrete schemes, as well as the associated Cea estimate, by simply applying a suitable combination of the classical Babuska-Brezzi theory and the Banach fixed point Theorem. In particular, given any integer k ≥ 0, the stability of the Galerkin scheme is guaranteed by employing Raviart-Thomas elements of order k for the velocity, piecewise polynomials of degree k for the pressure, and continuous piecewise polynomials of degree k+1 for an additional Lagrange multiplier given by the trace of the pressure on the Neumann boundary. Note that the two ways of writing the continuous formulation suggest accordingly two different methods for solving the discrete schemes. Next, we derive a reliable and efficient residualbased a posteriori error estimator for this problem. The global inf-sup condition satisfied by the continuous formulation, Helmholtz decompositions, and the local approximation properties of the Raviart-Thomas and Cl´ement interpolation operators are the main tools for proving the reliability. In turn, inverse and discrete inequalities, and the localization technique based on triangle-bubble and edge-bubble functions are utilized to show the efficiency. Finally, several numerical results illustrating the good performance of both methods, confirming the aforementioned properties of the estimator, and showing the behaviour of the associated adaptive algorithm, are
dc.description.sponsorshipCentro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepciónes
dc.description.sponsorshipUniversity of Lausannees
dc.description.sponsorshipMinistry of Education, Youth and Sports of the Czech Republices
dc.publisherAmerican Mathematical Societyes
dc.relation.ispartofMathematics of Computation, 85, 1-33.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.subjectDarcy’s equationses
dc.subjectnonlinear problemes
dc.subjecta posteriori error analysises
dc.titleA mixed finite element method for Darcy’s equations with pressure dependent porosityes
dc.contributor.affiliationUniversidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numéricoes
dc.contributor.groupUniversidad de Sevilla. FQM131: Ec.diferenciales,Simulación Num.y Desarrollo Softwarees
dc.journaltitleMathematics of Computationes

A mixed finite element method ...2.884MbIcon   [PDF] View/Open  

This item appears in the following collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as: Attribution-NonCommercial-NoDerivatives 4.0 Internacional