Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Artículo
Symmetric functions in noncommuting variables
Autor/es | Rosas Celis, Mercedes Helena
Sagan, Bruce E. |
Departamento | Universidad de Sevilla. Departamento de álgebra |
Fecha de publicación | 2006 |
Fecha de depósito | 2016-05-31 |
Publicado en |
|
Resumen | Consider the algebra Qhhx1, x2, . . .ii of formal power series in countably many noncommuting variables over the rationals. The subalgebra Π(x1, x2, . . .) of symmetric functions in noncommuting variables consists of all ... Consider the algebra Qhhx1, x2, . . .ii of formal power series in countably many noncommuting variables over the rationals. The subalgebra Π(x1, x2, . . .) of symmetric functions in noncommuting variables consists of all elements invariant under permutation of the variables and of bounded degree. We develop a theory of such functions analogous to the ordinary theory of symmetric functions. In particular, we define analogs of the monomial, power sum, elementary, complete homogeneous, and Schur symmetric functions as will as investigating their properties. |
Cita | Rosas Celis, M.H. y Sagan, B.E. (2006). Symmetric functions in noncommuting variables. Transactions of the American Mathematical Society, 358 (1), 215-232. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
Symmetric functions in noncommuting ... | 224.4Kb | [PDF] | Ver/ | |