Artículo
An efficient two-dimensional Vortex method with long time accuracy
Autor/es | Bless Ranero, Ibrahim
Chacón Rebollo, Tomás |
Departamento | Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico |
Fecha de publicación | 1996-08 |
Fecha de depósito | 2016-05-17 |
Publicado en |
|
Resumen | This paper deals with efficient techniques for the numerical solution of two-dimensional free-space incompressible Euler equations. We develop an algorithm for fast computation of velocity in a vortex method based
upon ... This paper deals with efficient techniques for the numerical solution of two-dimensional free-space incompressible Euler equations. We develop an algorithm for fast computation of velocity in a vortex method based upon discretization of vorticity by finite elements. We prove that the method with fast computation of velocity is numerically stable and convergent with second-order accuracy. Some standard numerical tests show that the algorithm with Delaunay regridding bears good stability and accuracy properties for long integration times, with a relatively low computational cost. Moreover, the algorithm is found to be more accurate than high-order vortex-blob methods with regridding for long enough integration times. |
Agencias financiadoras | Dirección General de Investigación Científica y Técnica (DGICYT). España |
Identificador del proyecto | PB91-0619 |
Cita | Bless Ranero, I. y Chacón Rebollo, T. (1996). An efficient two-dimensional Vortex method with long time accuracy. SIAM Journal on Numerical Analysis, 33 (4), 1425-1450. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
An efficient two-dimensional ... | 2.641Mb | [PDF] | Ver/ | |