Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Capítulo de Libro
Evolutionary q-Gaussian Radial Basis Functions for Improving Prediction Accuracy of Gene Classification Using Feature Selection
Autor/es | Fernández Navarro, Francisco
Hervás Martínez, César Gutiérrez, Pedro Antonio Ruiz Sánchez, Roberto Riquelme Santos, José Cristóbal |
Departamento | Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos |
Fecha de publicación | 2010 |
Fecha de depósito | 2016-04-27 |
Publicado en |
|
Resumen | This paper proposes a Radial Basis Function Neural Network (RBFNN) which reproduces different Radial Basis Functions (RBFs) by means of a real parameter q, named q-Gaussian RBFNN. The architecture, weights and node topology ... This paper proposes a Radial Basis Function Neural Network (RBFNN) which reproduces different Radial Basis Functions (RBFs) by means of a real parameter q, named q-Gaussian RBFNN. The architecture, weights and node topology are learnt through a Hybrid Algorithm (HA) with the iRprop + algorithm as the local improvement procedure. In order to test its overall performance, an experimental study with four gene microarray datasets with two classes taken from bioinformatic and biomedical domains is presented. The Fast Correlation–Based Filter (FCBF) was applied in order to identify salient expression genes from thousands of genes in microarray data that can directly contribute to determining the class membership of each pattern. After different gene subsets were obtained, the proposed methodology was performed using the selected gene subsets as the new input variables. The results confirm that the q-Gaussian RBFNN classifier leads to promising improvement on accuracy. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
Evolutionary q-Gaussian.pdf | 168.8Kb | [PDF] | Ver/ | |