Por motivos de mantenimiento se ha deshabilitado el inicio de sesión temporalmente. Rogamos disculpen las molestias.
Capítulo de Libro
Electricity Market Price Forecasting: Neural Networks versus Weighted-Distance k Nearest Neighbours
Autor/es | Troncoso Lora, Alicia
Riquelme Santos, José Cristóbal Riquelme Santos, Jesús Manuel Martínez Ramos, José Luis Gómez Expósito, Antonio |
Departamento | Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos Universidad de Sevilla. Departamento de Ingeniería Eléctrica |
Fecha de publicación | 2002 |
Fecha de depósito | 2016-03-30 |
Publicado en |
|
Resumen | In today’s deregulated markets, forecasting energy prices is becoming more and more important. In the short term, expected price profiles help market participants to determine their bidding strategies. Consequently, accuracy ... In today’s deregulated markets, forecasting energy prices is becoming more and more important. In the short term, expected price profiles help market participants to determine their bidding strategies. Consequently, accuracy in forecasting hourly prices is crucial for generation companies (GENCOs) to reduce the risk of over/underestimating the revenue obtained by selling energy. This paper presents and compares two techniques to deal with energy price forecasting time series: an Artificial Neural Network (ANN) and a combined k Nearest Neighbours (kNN) and Genetic algorithm (GA). First, a customized recurrent Multi-layer Perceptron is developed and applied to the 24-hour energy price forecasting problem, and the expected errors are quantified. Second, a k nearest neighbours algorithm is proposed using a Weighted-Euclidean distance. The weights are estimated by using a genetic algorithm. The performance of both methods on electricity market energy price forecasting is compared. |
Cita | Troncoso Lora, A., Riquelme Santos, J.C.,...,Gómez Expósito, A. (2002). Electricity Market Price Forecasting: Neural Networks versus Weighted-Distance k Nearest Neighbours. En Database and Expert Systems Applications, Lecture Notes in Computer Science, Volume 2453, pp 321-330 (2002) . |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
Electricity.pdf | 524.2Kb | [PDF] | Ver/ | |