Ponencia
Error estimates of optimal order in a fractional-step scheme for the 3D Navier-Stokes equations
Autor/es | Guillén González, Francisco Manuel
Redondo Neble, María Victoria |
Departamento | Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico |
Fecha de publicación | 2007-09 |
Fecha de depósito | 2016-02-19 |
Publicado en |
|
Resumen | We present some improvements on the error estimates obtained by J.Blasco and R.Codina for a viscosity-splitting in time scheme, with finite element approximation, applied to the 3D Navier-Stokes equations. The key is to ... We present some improvements on the error estimates obtained by J.Blasco and R.Codina for a viscosity-splitting in time scheme, with finite element approximation, applied to the 3D Navier-Stokes equations. The key is to obtain new error estimates for the discrete in time derivative of velocity, which let us to reach, in particular, error of order one (in time and space) for the pressure approximation. |
Identificador del proyecto | MTM2006–07932
FQM-315 |
Cita | Guillén González, F.M. y Redondo Neble, M.V. (2007). Error estimates of optimal order in a fractional-step scheme for the 3D Navier-Stokes equations. |
Ficheros | Tamaño | Formato | Ver | Descripción |
---|---|---|---|---|
Error estimates of optimal order ... | 180.5Kb | [PDF] | Ver/ | |