Article
Extremal Graphs without Topological Complete Subgraphs
Author/s | Cera López, Martín
![]() ![]() ![]() ![]() ![]() ![]() Diánez Martínez, Ana Rosa ![]() ![]() ![]() ![]() ![]() ![]() ![]() Márquez Pérez, Alberto ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Department | Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII) |
Date | 2004 |
Published in |
|
Abstract | The exact values of the function $ex(n;TK_{p})$ are known for ${\lceil \frac{2n+5}{3}\rceil}\leq p < n$ (see [Cera, Diánez, and Márquez, SIAM J. Discrete Math., 13 (2000), pp. 295--301]), where $ex(n;TK_p)$ is the maximum ... The exact values of the function $ex(n;TK_{p})$ are known for ${\lceil \frac{2n+5}{3}\rceil}\leq p < n$ (see [Cera, Diánez, and Márquez, SIAM J. Discrete Math., 13 (2000), pp. 295--301]), where $ex(n;TK_p)$ is the maximum number of edges of a graph of order n not containing a subgraph homeomorphic to the complete graph of order $p.$ In this paper, for ${\lceil \frac{2n+6}{3} \rceil}\leq p < n - 3,$ we characterize the family of extremal graphs $EX(n;TK_{p}),$ i.e., the family of graphs with n vertices and $ex(n;TK_{p})$ edges not containing a subgraph homeomorphic to the complete graph of order $p.$ |
Files | Size | Format | View | Description |
---|---|---|---|---|
Extremal graphs.pdf | 144.0Kb | ![]() | View/ | |